Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Cylinder Engine
2.2. Pressure-Based Calorimeter
2.3. Igniters
3. Experimental Campaign
3.1. Single-Cylinder Engine
3.2. Pressure-Based Calorimeter
4. Results and Discussion
4.1. Single-Cylinder Engine
4.2. Pressure-Based Calorimeter
5. Conclusions
- Higher in-cylinder pressure characterized the ML condition. In this case, considering the same λ values, reduced IT were used compared to the LL case, for both igniters. CSI needs reduced IT in both load conditions with respect to BDI. At higher load, higher driving voltage can be used, thus obtaining more energetic discharges. Higher IMEP was recorded once operating with wider throttle valve opening. No appreciable differences in terms of IMEP were found between corona igniters at the same load conditions.
- ML led to an extension of the lean stable limit (λBDI = 1.647, λCSI = 1.725) for both igniters compared to the LL case (λBDI = 1.55, λCSI = 1.60). While at LL the similar combustion durations performed by the igniters led to a similar lean extension, at ML the CSI was able to perform a higher extension by means of a highly lower combustion duration compared to BDI.
- At both load cases, BDI was featured with slower first combustion part (CA0-50). While at LL, BDI showed off a faster second combustion part (CA50-90), at ML CSI was found to be faster in all the combustion ranges.
- According to the abovementioned combustion speeds, while at LL BDI was characterized by lower CO compared to CSI, at ML its slower combustion led to higher CO emissions. In general, the ML case was characterized by lower CO values and higher NOx emission for both igniters compared to the low load case. The first one is probably correlated to turbulence motions which enhance the mixing by promoting the fuel oxidation, whereas the second one seems to be caused by the higher operating temperature due to the higher-pressure levels inside the chamber.
Author Contributions
Funding
Conflicts of Interest
Glossary and Nomenclature
aIT | after ignition timing |
aTDC | after top dead center |
ACIS | advanced corona ignition system |
BDI | barrier discharge igniter |
CAD | crank angle degree |
CFD | computational fluid dynamics |
CoV | coefficient of variation |
CSI | corona-streamer igniter |
ECU | engine control unit |
EGR | exhaust gas recirculation |
GDI | gasoline direct injection |
LL | low load conditions |
IMEP | indicated mean effective pressure |
IT | ignition timing |
LTP | low-temperature plasma |
MBT | maximum brake torque |
MFB | mass fraction burned |
MON | motor octane number |
Pcyl | mean in-cylinder pressure |
PFI | port fuel injection |
ML | medium load condition |
RLC | resistor-inductor-capacitor |
RON | research octane number |
TON | corona duration - activation time |
TTL | transistor-transistor logic |
VD | driving voltage |
λ | air/fuel ratio |
ER | thermal energy released |
References
- Alshammari, M.; Alshammari, F.; Pesyridis, A. Electric Boosting and Energy Recovery Systems for Engine Downsizing. Energies 2019, 12, 4636. [Google Scholar] [CrossRef]
- Ravaglioli, V.; Bussi, C. Model-Based Pre-Ignition Diagnostics in a Race Car Application. Energies 2019, 12, 2277. [Google Scholar] [CrossRef]
- Zsiga, N.; Voser, C.; Onder, C.; Guzzella, L. Intake Manifold Boosting of Turbocharged Spark-Ignited Engines. Energies 2013, 6, 1746–1763. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.; Cho, H. Emission Characteristics under Diesel and Biodiesel Fueled Compression Ignition Engine with Various Injector Holes and EGR Conditions. Energies 2020, 13, 2973. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Li, S.; Yang, J. A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR. Energies 2019, 12, 3739. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Ranuzzi, F.; Cavina, N.; De Cesare, M. CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies 2019, 12, 3409. [Google Scholar] [CrossRef]
- Jiang, L.J.; Shy, S.S.; Nguyen, M.T.; Huang, S.Y.; Yu, D.W. Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion. Combust. Flame 2018, 187, 87–95. [Google Scholar] [CrossRef]
- Zembi, J.; Mariani, F.; Battistoni, M. Large Eddy Simulation of Ignition and Combustion Stability in a Lean SI Optical Access Engine. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Wang, J.; Yan, F.; Fang, N.; Yan, D.; Zhang, G.; Wang, Y.; Yang, W. An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance. Energies 2020, 13, 693. [Google Scholar] [CrossRef]
- Aleiferis, P.G.; Taylor, A.M.K.P.; Ishii, K.; Urata, Y. The Nature of Early Flame Development in a Lean-Burn Stratified-Charge Spark-Ignition Engine. Combust. Flame 2004, 136, 283–302. [Google Scholar] [CrossRef]
- Mao, B.; Chen, P.; Liu, H.; Zheng, Z.; Yao, M. “Gasoline compression ignition operation on a multi-cylinder heavy duty diesel engine. Fuel 2018, 215, 339–351. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988; ISBN 0-07-028637-X. [Google Scholar]
- Wu, Y.-Y.; Wang, J.H.; Mir, F.M. Improving the Thermal Efficiency of the Homogeneous Charge Compression Ignition Engine by Using Various Combustion Patterns. Energies 2018, 11, 3002. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.; Mahlia, T.; Rahman, S.A.; Silitonga, A.; Ong, H.C. Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review. Energies 2019, 12, 3557. [Google Scholar] [CrossRef]
- Meng, L.; Luo, J.; Yang, X.; Zeng, C. Intake Air Mass Observer Design Based on Extended Kalman Filter for Air-Fuel Ratio Control on SI Engine. Energies 2019, 12, 3444. [Google Scholar] [CrossRef]
- Alger, T.; Gingrich, J.; Roberts, C.; Mangold, B. A High Energy Continuous Discharge Ignition System for Dilute Engine Applications. SAE Tech. Pap. 2013. [Google Scholar] [CrossRef]
- Poggiani, C.; Cimarello, A.; Battistoni, M.; Grimaldi, C. Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation. SAE Tech. Pap. 2016. [Google Scholar] [CrossRef]
- Dale, J.D.; Checkel, M.D.; Smy, P.R. Application of High Energy Ignition Systems to Engines. Prog. Energy Combust. Sci. 1997, 23, 379–398. [Google Scholar] [CrossRef]
- Badawy, T.; Bao, X.; Xu, H. Impact of spark plug gap on flame kernel propagation and engine performance. Appl. Energy 2017, 191, 311–27. [Google Scholar] [CrossRef]
- Breden, D.; Karpatne, A.; Suzuki, K.; Raja, L. High-fidelity numerical modeling of spark plug erosion. SAE Tech. Pap. 2019, 2019-April, 1–12. [Google Scholar] [CrossRef]
- Lasagni, A.; Soldera, F.; Mücklich, F. FEM simulation of local heating and melting during electrical discharge plasma impact. Model. Simul. Mater. Sci. Eng. 2004, 12, 835–844. [Google Scholar] [CrossRef]
- Shiraishi, T.; Urushihara, T. Fundamental Analysis of Combustion Initiation Characteristics of Low Temperature Plasma Ignition for Internal Combustion Gasoline Engine. SAE Tech. Pap. 2011, 399–408. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma assisted ignition and combustion. J. Phys. D Appl. Phys. 2006, 39, R265–R299. [Google Scholar] [CrossRef]
- Defilippo, A.C.; Saxena, S.; Rapp, V.; Dibble, R.W.; Chen, J.-Y.; Nishiyama, A.; Ikeda, Y. Extending the Lean Stability Limits of Gasoline Using a Microwave-Assisted Spark Plug. SAE Tech. Pap. 2011. [Google Scholar] [CrossRef]
- Starikovskii, A.Y.; Anikin, N.B.; Kosarev, I.N.; Mintoussov, E.I. Nanosecond Pulsed Discharges for Plasma Assisted Combustion and Aerodynamics. J. Propuls. Power 2008, 24, 1182–1197. [Google Scholar] [CrossRef]
- Pineda, D.I.; Wolk, B.; Chen, J.-Y.; Dibble, R.W. Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions. SAE Int. J. Engines 2016, 9, 1970–1988. [Google Scholar] [CrossRef]
- Subramaniam, V.; Karpatne, A.; Breden, D.; Raja, L. Simulation of Spark-Initiated Combustion. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma-assisted ignition and combustion: Nanosecond discharges and development of kinetic mechanisms. J. Phys. D Appl. Phys. 2014, 47, 353001. [Google Scholar] [CrossRef]
- Popov, N.A. Kinetic processes initiated by a nanosecond high-current discharge in hot air. Plasma Phys. Rep. 2011, 37, 807–815. [Google Scholar] [CrossRef]
- Rickard, M.; Dunn-Rankin, D.; Weinberg, F.; Carleton, F. “Characterization of Ionic Wind Velocity. J. Electrost. 2005, 63, 711–716. [Google Scholar] [CrossRef]
- Burrows, J.; Mixell, K. New Developments and Optimization of the Advanced Corona Ignition System (ACIS). In Proceedings of the 4th International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 6–7 December 2018; pp. 340–370. [Google Scholar]
- Idicheria, C.A.; Najt, P.M. Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications. In Ignition Systems for Gasoline Engines. CISGE 2016; Günther, M., Sens, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Discepoli, G.; Cruccolini, V.; Ricci, F.; di Giuseppe, A.; Papi, S.; Grimaldi, C.N. Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air. Appl. Energy 2020, 263, 114617. [Google Scholar] [CrossRef]
- Cruccolini, V.; Discepoli, G.; Cimarello, A.; Battistoni, M.; Mariani, F.; Grimaldi, C.N.; Re, M.D. Lean combustion analysis using a corona discharge igniter in an optical engine fueled with methane and a hydrogen-methane blend. Fuel 2020, 259, 116290. [Google Scholar] [CrossRef]
- Breden, D.P.; Idicheria, C.A.; Keum, S.; Najt, P.M.; Raja, L.L. Modeling of a Dielectric-Barrier Discharge-Based Cold Plasma Combustion Ignition System. IEEE Trans. Plasma Sci. 2019, 47, 410–418. [Google Scholar] [CrossRef]
- Biswas, S.; Ekoto, I.; Scarcelli, R. Alternative Ignition Systems Applications. In Proceedings of the 4th International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 6–7 December 2018; pp. 311–328. [Google Scholar]
- Burrows, J.; Mixell, K. Analytical and Experimental Optimization of the Advanced Corona Ignition System. In Ignition Systems for Gasoline Engines; Springer International Publishing: Cham, Switzerland, 2016; pp. 267–292. [Google Scholar] [CrossRef]
- Marko, F.; König, G.; Schöffler, T.; Bohne, S.; Dinkelacker, F. Comparative Optical and Thermodynamic Investigations of High Frequency Corona- and Spark- Ignition on a CV Natural Gas Research Engine Operated with Charge Dilution by Exhaust Gas Recirculation. In Ignition Systems for Gasoline Engines; Springer International Publishing: Cham, Switzerland, 2017; pp. 293–314. ISBN 978-3-319-45503-7. [Google Scholar] [CrossRef]
- Yu, S.; Wang, M.; Zheng, M. Distributed Electrical Discharge to Improve the Ignition of Premixed Quiescent and Turbulent Mixtures; SAE Technical Paper 2016-01-0706; SAE: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Cimarello, A.; Grimaldi, C.; Mariani, F.; Battistoni, M.; Re, M.D. Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; A Xu, D.; O Laux, C.; Vervisch, P. Streamer-to-Spark Transition Initiated by a Nanosecond Overvoltage Pulsed Discharge in Air. Plasma Sources Sci. Technol. 2017, 26, 045012. [Google Scholar] [CrossRef]
- Zhang, A.; Scarcelli, R.; Wallner, T.; Breden, D.P.; Karpatne, A.; Raja, L.L.; Ekoto, I.; Wolk, B. Numerical Investigation of Nanosecond Pulsed Discharge in Air at above Atmospheric Pressures. J. Phys. D Appl. Phys. 2018, 51, 345201. [Google Scholar] [CrossRef]
- Cimarello, A.; Cruccolini, V.; Discepoli, G.; Battistoni, M.; Mariani, F.; Grimaldi, C.; Re, M.D. Combustion Behavior of an RF Corona Ignition System with Different Control Strategies. SAE Tech. Pap. 2018. [Google Scholar] [CrossRef]
- Discepoli, G.; Cruccolini, V.; Re, M.D.; Zembi, J.; Battistoni, M.; Mariani, F.; Grimaldi, C. Experimental Assessment of Spark and Corona Igniters Energy Release. Energy Procedia 2018, 148, 1262–1269. [Google Scholar] [CrossRef]
- Idicheria, C.A.; Yun, H.; Najt, P.M. An Advanced Ignition System for High Efficiency Engines. In Proceedings of the 4th International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 6–7 December 2018; pp. 40–54. [Google Scholar] [CrossRef]
- Shcherbanev, S.; De Martino, A.; Khomenko, A.; Starikovskaia, S.; Padala, S.; Ikeda, Y. Emission Spectroscopy Study of the Microwave Discharge Igniter. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Enloe, C.L.; Mangina, R.S.; Font, G.I. Normalized electronegative species effects in the dielectric-barrier-discharge plasma actuator. AIAA J. 2016, 54, 2061–2068. [Google Scholar] [CrossRef]
- Burrows, J.; Mixell, K.; Reinicke, P.B.; Riess, M.; Sens, M. Corona Ignition—Assessment of Physical Effects by Pressure Chamber, Rapid Compression Machine, and Single Cylinder Engine Testing. In Proceedings of the 2nd International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 24–25 November 2014. [Google Scholar]
- Yun, H.; Idicheria, C.; Najt, P. The Effect of Advanced Ignition System on Gasoline Low Temperature Combustion. Int. J. Engine Res. 2019. [Google Scholar] [CrossRef]
- Bresler, M.; Attard, W.; Reese, R. Investigation of Alternative Ignition System Impact on External EGR Dilution Tolerance in a Turbocharged Homogeneous Direct Injected Spark Ignited Engine. SAE Int. J. Engines 2015, 8, 1967–1976. [Google Scholar] [CrossRef]
- Irimescu, A.; Tornatore, C.; Marchitto, L.; Merola, S.S. Compression Ratio and Blow-by Rates Estimation Based on Motored Pressure Trace Analysis for an Optical Spark Ignition Engine. Appl. Therm. Eng. 2013, 61, 101–109. [Google Scholar] [CrossRef]
- Irimescu, A.; Merola, S.S.; Tornatore, C.; Valentino, G.; Grimaldi, A.; Carugati, E.; Silva, S. Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR. SAE Tech. Pap. 2016. [Google Scholar] [CrossRef]
- Merola, S.S.; Irimescu, A.; Valentino, G.; Tornatore, C.; Silva, S.; Grimaldi, A.; Carugati, E. Experimental Evaluation of an Advanced Ignition System for GDI Engines. SAE Int. J. Engines 2015, 8, 2351–2367. [Google Scholar] [CrossRef]
- Ricci, F.; Zembi, J.; Battistoni, M.; Grimaldi, C.; Discepoli, G. Experimental and Numerical Investigations of the Early Flame Development Produced by a Corona Igniter. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Cruccolini, V.; Discepoli, G.; Ricci, F.; Petrucci, L.; Grimaldi, C.; Papi, S.; Re, M.D. Comparative Analysis between a Barrier Discharge Igniter and a Streamer-type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions. SAE Tech. Pap. 2020. [Google Scholar] [CrossRef]
- Hahn, J.; Schenk, M.; Schauer, F.X.; Sauer, C.; Weber, G.; Schwarz, C. From glow tube to corona—Challenges to the ignition systems of future SI engines. In Internationaler Motorenkongress 2017. Proceedings; Liebl, J., Beidl, C., Eds.; Springer Vieweg: Wiesbaden, Germany. [CrossRef]
- Hwang, J.; Kim, W.; Bae, C.; Choe, W.; Cha, J.; Woo, S. Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine. Appl. Energy 2017, 205, 562–576. [Google Scholar] [CrossRef]
- Singleton, D.; Pendleton, S.J.; Gundersen, M.A. The role of non thermal transient plasma for enhanced flame ignition in C2H4 air. J. Phys. D Appl. Phys. 2010, 44, 022001. [Google Scholar] [CrossRef]
- Scarcelli, R.; Wallner, T.; Som, S.; Biswas, S.; Ekoto, I.; Breden, D.P.; Karpatne, A.; Raja, L.L. Modeling Non-Equilibrium Discharge and Validating Transient Plasma Characteristics at above Atmospheric Pressure. Plasma Sources Sci. Technol. 2018, 27, 124006. [Google Scholar] [CrossRef]
- Bikas, G.; Michos, K. Carbon Monoxide Emissions Model for Data Analytics in Internal Combustion Engine Applications Derived from Post-Flame Chemical Kinetics. SAE Int. J. Engines 2018, 11, 947–964. [Google Scholar] [CrossRef]
- Nebel, G.J.; Jackson, M.W. Some Factors Affecting the Concentration of Oxides of Nitrogen in Exhaust Gases from Spark Ignition Engines. J. Air Pollut. Control Assoc. 1958, 8, 213–219. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 1991, 19, 1063–1077. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, L.; Li, B.; Li, Z.S.; Sun, Z.W.; Aldén, M.; Cen, K.F.; Konnov, A.A. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame 2012, 159, 120–129. [Google Scholar] [CrossRef]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
Feature | Value | Unit |
---|---|---|
Displaced volume | 500 | cc |
Stroke | 88 | mm |
Bore | 85 | mm |
Connecting rod length | 139 | mm |
Compression ratio | 8:8:1 | - |
Number of valves | 4 | - |
Exhaust valve open | 13 | CAD bBDC |
Exhaust valve close | 25 | CAD aBDC |
Intake valve open | 20 | CAD bBDC |
Intake valve close | 24 | CAD aBDC |
BDI | CSI | |
---|---|---|
Pressure interval (from-to), bar | 3.4–4.5 | 5.6–7.2 |
Corona duration, μs | 1500 | 1500 |
Driving voltage, V | 60 | 22 |
Gas type | Air |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, F.; Petrucci, L.; Cruccolini, V.; Discepoli, G.; Grimaldi, C.N.; Papi, S. Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine. Proceedings 2020, 58, 11. https://doi.org/10.3390/WEF-06909
Ricci F, Petrucci L, Cruccolini V, Discepoli G, Grimaldi CN, Papi S. Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine. Proceedings. 2020; 58(1):11. https://doi.org/10.3390/WEF-06909
Chicago/Turabian StyleRicci, Federico, Luca Petrucci, Valentino Cruccolini, Gabriele Discepoli, Carlo N. Grimaldi, and Stefano Papi. 2020. "Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine" Proceedings 58, no. 1: 11. https://doi.org/10.3390/WEF-06909
APA StyleRicci, F., Petrucci, L., Cruccolini, V., Discepoli, G., Grimaldi, C. N., & Papi, S. (2020). Investigation of the Lean Stable Limit of a Barrier Discharge Igniter and of a Streamer-Type Corona Igniter at Different Engine Loads in a Single-Cylinder Research Engine. Proceedings, 58(1), 11. https://doi.org/10.3390/WEF-06909