Study of Machine Learning Techniques for EEG Eye State Detection †
Abstract
:1. Introduction
2. Material and Methods
3. Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Abbreviations
DCT | Discrete Fourier Transform |
DWT | Discrete Wavelet Transform |
ICA | Independent Component Analysis |
LDA | Linear Discriminant Analysis |
SVM | Support Vector Machine |
References
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Magee, C.A.; Rushby, J.A. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Laport, F.; Dapena, A.; Castro, P.M.; Vazquez-Araujo, F.J.; Iglesia, D. A Prototype of EEG System for IoT. Int. J. Neural Syst. 2020, 2050018. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rosario, A.; Adeli, H. Brain-computer interface technologies: From signal to action. Rev. Neurosci. 2013, 24, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.F.; Souloumiac, A. Blind beamforming for non-Gaussian signals. In Proceedings of the F-Radar and Signal Processing; IET: Stevenage, UK, 1993; Volume 140, pp. 362–370. [Google Scholar]
(a) Accuracy for oE | ||||||
---|---|---|---|---|---|---|
DFT | coif4 | JADE+DFT | ||||
Subject | SVM | LDA | SVM | LDA | SVM | LDA |
1 | 99.52 | 97.71 | 98.55 | 94.58 | 100.00 | 98.31 |
2 | 90.96 | 88.43 | 81.81 | 81.20 | 93.61 | 90.72 |
3 | 99.88 | 95.90 | 97.47 | 96.02 | 100.00 | 93.73 |
4 | 97.95 | 89.40 | 85.30 | 82.77 | 85.90 | 81.33 |
5 | 96.63 | 96.51 | 70.00 | 66.51 | 97.83 | 96.99 |
6 | 89.04 | 70.12 | 93.25 | 84.58 | 95.54 | 73.25 |
7 | 94.70 | 83.98 | 85.30 | 80.72 | 93.73 | 88.31 |
(b) Accuracy for cE | ||||||
DFT | coif4 | JADE+DFT | ||||
Subject | SVM | LDA | SVM | LDA | SVM | LDA |
1 | 100.00 | 100.00 | 98.43 | 100.00 | 100.00 | 100.00 |
2 | 87.83 | 89.88 | 77.83 | 82.89 | 91.45 | 92.65 |
3 | 100.00 | 100.00 | 98.67 | 100.00 | 99.76 | 100.00 |
4 | 97.71 | 98.92 | 86.02 | 91.81 | 82.05 | 88.31 |
5 | 96.02 | 98.43 | 76.87 | 79.64 | 95.54 | 97.95 |
6 | 89.40 | 96.51 | 94.22 | 98.19 | 93.49 | 99.52 |
7 | 96.27 | 100.00 | 84.22 | 89.76 | 94.58 | 99.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laport, F.; Castro, P.M.; Dapena, A.; Vazquez-Araujo, F.J.; Iglesia, D. Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings 2020, 54, 53. https://doi.org/10.3390/proceedings2020054053
Laport F, Castro PM, Dapena A, Vazquez-Araujo FJ, Iglesia D. Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings. 2020; 54(1):53. https://doi.org/10.3390/proceedings2020054053
Chicago/Turabian StyleLaport, Francisco, Paula M. Castro, Adriana Dapena, Francisco J. Vazquez-Araujo, and Daniel Iglesia. 2020. "Study of Machine Learning Techniques for EEG Eye State Detection" Proceedings 54, no. 1: 53. https://doi.org/10.3390/proceedings2020054053
APA StyleLaport, F., Castro, P. M., Dapena, A., Vazquez-Araujo, F. J., & Iglesia, D. (2020). Study of Machine Learning Techniques for EEG Eye State Detection. Proceedings, 54(1), 53. https://doi.org/10.3390/proceedings2020054053