Deep Image Segmentation for Breast Keypoint Detection †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oliveira, H.P.; Cardoso, J.S.; Magalhaes, A.; Cardoso, M.J. Methods for the Aesthetic Evaluation of Breast Cancer Conservation Treatment: A Technological Review. Curr. Med Imaging Rev. 2013, 9, 32–46. [Google Scholar] [CrossRef]
- Wilkes, G.M.; Barton-Burke, M. 2018 Oncology Nursing Drug Handbook; OCLC: 1030285714; Jones & Bartlett Learning: Burlington, MA, USA, 2018. [Google Scholar]
- Street, W. Cancer Facts & Figures; American Cancer Society: Atlanta, GA, USA, 2018; p. 76. [Google Scholar]
- Cardoso, J.S.; Cardoso, M.J. Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment. Artif. Intell. Med. 2007, 40, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.; Castro, E.; Cardoso, M.J.; Fitzal, F.; Cardoso, J.S. Deep Keypoint Detection for the Aesthetic Evaluation of Breast Cancer Surgery Outcomes. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI’19), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Gonçalves, T.; Silva, W.; Cardoso, M.J.; Cardoso, J.S. A novel approach to keypoint detection for the aesthetic evaluation of breast cancer surgery outcomes. In Health and Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. In Proceedings of the 14th Annual Conference on Computer GRAPHICS and interactive Techniques—SIGGRAPH ’87; ACM Press: New York, NY, USA, 1987; pp. 163–169. [Google Scholar] [CrossRef]
Model | Endpoints | Breast Contours | Nipples | Execution Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Max | Mean | STD | Max | Mean | STD | Max | ||
Silva et al. Keypoint Detection DNN | 40 | 33 | 182 | 21 | 8 | 72 | 70 | 39 | 218 | 150 |
Silva et al. Keypoint Detection Method | 40 | 33 | 182 | 13 | 14 | 104 | 70 | 39 | 218 | 1704 |
Proposed Keypoint Detection Method | 38 | 34 | 195 | 11 | 5 | 34 | 70 | 39 | 218 | 280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, T.; Silva, W.; Cardoso, M.J.; Cardoso, J.S. Deep Image Segmentation for Breast Keypoint Detection. Proceedings 2020, 54, 35. https://doi.org/10.3390/proceedings2020054035
Gonçalves T, Silva W, Cardoso MJ, Cardoso JS. Deep Image Segmentation for Breast Keypoint Detection. Proceedings. 2020; 54(1):35. https://doi.org/10.3390/proceedings2020054035
Chicago/Turabian StyleGonçalves, Tiago, Wilson Silva, Maria J. Cardoso, and Jaime S. Cardoso. 2020. "Deep Image Segmentation for Breast Keypoint Detection" Proceedings 54, no. 1: 35. https://doi.org/10.3390/proceedings2020054035
APA StyleGonçalves, T., Silva, W., Cardoso, M. J., & Cardoso, J. S. (2020). Deep Image Segmentation for Breast Keypoint Detection. Proceedings, 54(1), 35. https://doi.org/10.3390/proceedings2020054035