Fully Automatic Retinal Vascular Tortuosity Assessment Integrating Domain-Related Information †
Abstract
:1. Introduction
2. Methodology
3. Results and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramos, L.; Novo, J.; Rouco, J.; Romeo, S.; Álvarez, M.D.; Ortega, M. Computational assessment of the retinal vascular tortuosity integrating domain-related information. Sci. Rep. 2019, 9, 19940. [Google Scholar]
- Grisan, E.; Foracchia, M.; Ruggeri, A. A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 2008, 27, 310–319. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, L.; Novo, J.; Rouco, J.; Romeo, S.; Álvarez, M.D.; Ortega, M. Fully Automatic Retinal Vascular Tortuosity Assessment Integrating Domain-Related Information. Proceedings 2020, 54, 32. https://doi.org/10.3390/proceedings2020054032
Ramos L, Novo J, Rouco J, Romeo S, Álvarez MD, Ortega M. Fully Automatic Retinal Vascular Tortuosity Assessment Integrating Domain-Related Information. Proceedings. 2020; 54(1):32. https://doi.org/10.3390/proceedings2020054032
Chicago/Turabian StyleRamos, Lucía, Jorge Novo, José Rouco, Stéphanie Romeo, María D. Álvarez, and Marcos Ortega. 2020. "Fully Automatic Retinal Vascular Tortuosity Assessment Integrating Domain-Related Information" Proceedings 54, no. 1: 32. https://doi.org/10.3390/proceedings2020054032
APA StyleRamos, L., Novo, J., Rouco, J., Romeo, S., Álvarez, M. D., & Ortega, M. (2020). Fully Automatic Retinal Vascular Tortuosity Assessment Integrating Domain-Related Information. Proceedings, 54(1), 32. https://doi.org/10.3390/proceedings2020054032