Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Research
2.2. CFD Research
2.2.1. Force Analysis
3. Results and Discussion
3.1. Field Research
3.2. CFD Research
3.2.1. Skill Level Comparison
3.2.2. Control vs. RW
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Shormann, D.E.; in het Panhuis, M. Performance evaluation of a humpback whale-inspired hydrofoil design applied to surfboard fins. In Proceedings of the OCEANS 2019 MTS/IEEE Conference, Seattle, WA, USA, 27–31 October 2019. [Google Scholar]
- Warshaw, M. The History of Surfing; Chronicle Books: San Francisco, CA, USA, 2010. [Google Scholar]
- Farley, O.R.L. Competitive Surfing: A Physiological Profile of Athletes and Determinants of Performance. Master’s Thesis, Auckland University of Technology, Auckland, Australia, 2011. [Google Scholar]
- Farley, O.R.L.; Abbiss, C.R.; Sheppard, J.M. Performance Analysis of Surfing: A Review. J. Strength Cond. Res. 2017, 31, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Gately, R.D.; Beirne, S.; Latimer, G.; Shirlaw, M.; Kosasih, B.; Warren, A.; Steele, J.R.; in het Panhuis, M. Additive Manufacturing, Modeling and Performance Evaluation of 3D Printed Fins for Surfboards. Mrs Adv. 2017, 2, 913–920. [Google Scholar] [CrossRef]
- Shormann, D.E.; in het Panhuis, M. Performance evaluation of humpback whale-inspired shortboard surfing fins based on ocean wave fieldwork. PLoS ONE 2020, 15, e0232035. [Google Scholar] [CrossRef]
- Hutt, J.A.; Black, K.P.; Mead, S.T. Classification of Surf Breaks in Relation to Surfing Skill. J. Coast. Res. 2001, 29, 66–81. [Google Scholar]
- Oggiano, L. Numerical Comparison between a Modern Surfboard and an Alaia Board using Computational Fluid Dynamics (CFD). In Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2017), Madeira, Portugal, 30–31 October 2017; pp. 75–82. [Google Scholar]
- Oggiano, L.; Pierella, F. CFD for surfboards: Comparison between three different designs in static and maneuvering conditions. In Proceedings of the 12th Conference of the International Sports Engineering Association, Brisbane, Queensland, Australia, 26–28 March 2018. [Google Scholar]
- Falk, S.; Kniesburges, R.; Janka, R.; Grosso, R.; Becker, S.; Semmler, M.; Dollinger, M. Computational hydrodynamics of a typical 3-fin surfboard setup. J. Fluids Struct. 2019, 90, 297–314. [Google Scholar] [CrossRef]
- El-Atm, B.; Kelson, N.; Gudimetla, P. A finite element analysis of the hydrodynamic performance of 3- and 4-fin surfboard configurations. In Proceedings of the 9th Global Congress on Manufacturing and Management (GCMM2008), Surfers Paradise, Australia, 12–14 November 2008. [Google Scholar]
- Aftab, S.M.A.; Razak, N.A.; Mohd Rafie, A.S.; Ahmad, K.A. Mimicking the humpback whale: An aerodynamic perspective. Prog. Aerosp. Sci 2016, 84, 48–69. [Google Scholar] [CrossRef]
- Tong, F.; Qiao, W.; Chen, W.; Cheng, H.; Wei, R.; Wang, X. Numerical analysis of broadband noise reduction with wavy leading edge. Chin. J. Aeronaut. 2018, 31, 1489–1505. [Google Scholar] [CrossRef]
Skill Level Per | Flow Speed | Roll Rate | Pitch Rate | Yaw Rate |
---|---|---|---|---|
[7] | (m/s) | (rad/s) | (rad/s) | (rad/s) |
Intermediate | 7.0 | 1.00 | 0.50 | 2.25 |
Expert | 7.0 | 1.25 | 0.75 | 2.75 |
WCT | 7.0 | 1.5 | 1.00 | 3.25 |
Fieldwork Summary | Control Fins | RW Fins | p-Value |
---|---|---|---|
# cutbacks | 815 | 666 | - |
Mean session speed (m/s) | 5.3 ± 0.1 | 5.1 ± 0.1 | 0.005 |
Bottom turn initial speed (m/s) | 7.1 ± 0.1 | 7.1 ± 0.1 | 0.512 |
Cutback speed (m/s) | 6.4 ± 0.1 | 6.3 ± 0.1 | 0.873 |
Performance Means | |||
yaw rate (rad/s) | 2.6 ± 0.1 | 2.7 ± 0.1 | 0.143 |
roll rate (rad/s) | 1.1 ± 0.04 | 1.1 ± 0.05 | 0.094 |
pitch rate (rad/s) | 0.7 ± 0.03 | 0.7 ± 0.04 | 0.005 |
yaw power (W) | 140 ± 14 | 163 ± 17 | 0.035 |
roll power (W) | 28 ± 3 | 36 ± 5 | 0.011 |
pitch power (W) | 13 ± 2 | 18 ± 4 | 0.005 |
Total power (W) | 180 ± 18 | 216 ± 24 | 0.019 |
Total power/Inertia | 6.6 ± 0.6 | 7.6 ± 0.8 | 0.043 |
Cp | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.042 |
Trace cutback power | 4.0 ± 0.2 | 4.0 ± 0.2 | 0.625 |
Intermediate | Resultant Magnitude (N) | Direction (deg) | ||||
---|---|---|---|---|---|---|
Control | RW | p-value | Control | RW | p-value | |
Left fin | 194 ± 8 | 184 ± 8 | 0.116 | −69 ± 2 | −69 ± 2 | 0.925 |
Center fin | 209 ± 9 | 212 ± 9 | 0.635 | −65 ± 2 | −65 ± 2 | 0.960 |
Right fin | 155 ± 6 | 179 ± 8 | <0.001 | −55 ± 2 | −58 ± 2 | 0.029 |
All fins | 554 ± 23 | 574 ± 25 | 0.250 | −64 ± 2 | −64 ± 2 | 0.715 |
Expert | Resultant Magnitude (N) | Direction (deg) | ||||
---|---|---|---|---|---|---|
Control | RW | p-value | Control | RW | p-value | |
Left fin | 213 ± 10 | 203 ± 10 | 0.186 | −70 ± 2 | −70 ± 2 | 0.960 |
Center fin | 225 ± 11 | 225 ± 10 | 0.974 | −66 ± 2 | −66 ± 2 | 0.959 |
Right fin | 168 ± 8 | 189 ± 9 | <0.001 | −57 ± 2 | −60 ± 2 | 0.045 |
All fins | 605 ± 28 | 616 ± 29 | 0.542 | −65 ± 2 | −66 ± 2 | 0.708 |
WCT | Resultant Magnitude (N) | Direction (deg) | ||||
---|---|---|---|---|---|---|
Control | RW | p-value | Control | RW | p-value | |
Left fin | 234 ± 13 | 219 ± 12 | 0.084 | −74 ± 2 | −74 ± 2 | 0.904 |
Center fin | 249 ± 14 | 244 ± 13 | 0.572 | −70 ± 2 | −70 ± 2 | 0.931 |
Right fin | 174 ± 10 | 189 ± 11 | 0.045 | −60 ± 2 | −63 ± 2 | 0.057 |
All fins | 654 ± 36 | 650 ± 36 | 0.872 | −69 ± 2 | −69 ± 2 | 0.799 |
WCT | All Fins Resultant (N) | ||
---|---|---|---|
Control | RW | p-value | |
Before | 12.3 ± 0.09 | 12.5 ± 0.05 | <0.001 |
During | 690 ± 36 | 671 ± 33 | 0.431 |
After | 733 ± 7.6 | 755 ± 6.8 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shormann, D.; Panhuis, M.i.h.; Oggiano, L. Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins. Proceedings 2020, 49, 158. https://doi.org/10.3390/proceedings2020049158
Shormann D, Panhuis Mih, Oggiano L. Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins. Proceedings. 2020; 49(1):158. https://doi.org/10.3390/proceedings2020049158
Chicago/Turabian StyleShormann, David, Marc in het Panhuis, and Luca Oggiano. 2020. "Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins" Proceedings 49, no. 1: 158. https://doi.org/10.3390/proceedings2020049158
APA StyleShormann, D., Panhuis, M. i. h., & Oggiano, L. (2020). Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins. Proceedings, 49(1), 158. https://doi.org/10.3390/proceedings2020049158