Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis †
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening and Subjects
2.2. Experimental Setup
2.3. Simulation of the EMG Activities
2.4. Principal Component Analysis
3. Results
4. Discussion
5. Conclusions
Funding
References
- Asai, T.; Kamemoto, K. Flow structure of knuckling effect in footballs. J. Fluid Str. 2011, 27, 727–733. [Google Scholar] [CrossRef][Green Version]
- Kray, T.; Franke, J.; Frank, W. Magnus effect on a rotating soccer ball at high Reynolds numbers. J. Wind Eng. Indust. Aerodyn. 2014, 124, 46–53. [Google Scholar] [CrossRef]
- Nunome, H.; Lake, M.; Georgakis, A.; Stergioulas, L.K. Impact phase kinematics of instep kicking in soccer. J. Sport Sci. 2006, 24, 11–22. [Google Scholar] [CrossRef]
- Hong, S.; Chung, C.; Sakamoto, K.; Asai, T. Analysis of the swing motion on knuckling shot in soccer. Procedia Eng. 2011, 13, 176–181. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyoshi, T.; Takagi, M.; Kamada, Y. Synchronized Lower Limb Kinematics with Pelvis Orientation Achieve the Non-rotational Shot. Sport Eng. 2016, 19, 71–79. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyoshi, T.; Sato, S.; Takagi, M.; Kamada, Y.; Kobayashi, Y. Differences in soccer kicking type identified using principal component analysis. Sport Eng. 2018, 21, 149–159. [Google Scholar] [CrossRef]
- Ozaki, H.; Aoki, K. Kinematic and electromyographic analysis of infront curve soccer kick. Football Sci. 2008, 5, 26–36. [Google Scholar]
- Kang, K.T.; Koh, Y.G.; Nam, J.H.; Jung, M.; Kim, S.J.; Kim, S.H. Biomechanical evaluation of the influence of posterolateral corner structures on cruciate ligaments forces during simulated gait and squatting. PLoS ONE 2019, 14, e0214496. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, M.; Lee, K.K.; Lee, S.H. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine. Sensors 2017, 17, 299. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hobara, H.; Matsushita, S.; Mochimaru, M. Key joint kinematic characteristics of the gait of fallers identified by principal component analysis. J. Biomech. 2014, 47, 2424–2429. [Google Scholar] [CrossRef] [PubMed]
- Deluzio, K.J.; Astephen, J.L. Biomechanical features of gait waveform data associated with knee osteoarthritis: An application of principal component analysis. Gait Posture 2007, 25, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Federolf, P.; Reid, R.; Gilgien, M.; Haugen, P.; Smith, G. The application of principal component analysis to quantify technique in sports. Scand. J. Med. Sci. Sport 2014, 24, 491–499. [Google Scholar] [CrossRef] [PubMed]
Name of Muscle | Strength |
---|---|
Iliac m. | 0.39 ± 0.016 |
Gluteus medius m. | 0.91 ± 0.037 |
Rectus femoris m. | 1.24 ± 0.066 |
Vastus lateralis m. | 2.53 ± 0.135 |
Vastus medialis m. | 1.00 ± 0.053 |
Vastus intermedius m. | 0.54 ± 0.029 |
Biceps femoris m. | 2.33 ± 0.125 |
Semitendinosus m. | 1.26 ± 0.067 |
Semimembraneous m. | 1.47 ± 0.078 |
Sartorius m. | 0.51 ± 0.027 |
Tensor fasciae latae m. | 0.38 ± 0.020 |
Adductor longus m. | 0.22 ± 0.012 |
Adductor magnus m. | 0.32 ± 0.017 |
Gastrocnemius m. | 3.16 ± 0.135 |
Tibialis anterior m. | 0.64 ± 0.027 |
PCV1 | PCV2 | PCV3 | PCV4 | |
---|---|---|---|---|
Explained variance [%] | 28.79 | 10.06 | 7.74 | 4.96 |
Cumulative [%] | 28.79 | 38.85 | 46.59 | 51.55 |
IK: mean PCS (SD) | −0.038 ± 1.00 | −0.028 ± 0.67 | −0.47 ± 0.95 | −0.45 ± 0.96 |
NR shot: mean PCS (SD) | 0.038 ± 1.00 | 0.028 ± 1.3 | 0.47 ± 0.84 | 0.45 ± 0.85 |
p value | 0.840 | 0.880 | 0.008 | 0.011 |
PCV5 | PCV6 | PCV7 | PCV8 | |
Explained variance [%] | 4.43 | 3.98 | 3.56 | 2.96 |
Cumulative [%] | 55.98 | 59.96 | 63.52 | 66.48 |
IK: mean PCS (SD) | −0.35 ± 0.81 | −0.32 ± 0.84 | 0.25 ± 1.1 | 0.36 ± 0.96 |
NR shot: mean PCS (SD) | 0.35 ± 1.1 | 0.32 ± 1.1 | −0.25 ± 0.90 | −0.36 ± 0.94 |
p value | 0.054 | 0.076 | 0.176 | 0.046 |
PCV9 | PCV10 | |||
Explained variance [%] | 2.58 | 2.39 | ||
Cumulative [%] | 69.06 | 71.45 | ||
IK: mean PCS (SD) | 0.014 ± 1.1 | 0.12 ± 1.0 | ||
NR shot: mean PCS (SD) | −0.014 ± 0.92 | −0.12 ± 0.97 | ||
p value | 0.943 | 0.516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyoshi, T.; Kamada, Y.; Kobayashi, Y. Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings 2020, 49, 154. https://doi.org/10.3390/proceedings2020049154
Miyoshi T, Kamada Y, Kobayashi Y. Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings. 2020; 49(1):154. https://doi.org/10.3390/proceedings2020049154
Chicago/Turabian StyleMiyoshi, Tasuku, Yasuhisa Kamada, and Yoshiyuki Kobayashi. 2020. "Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis" Proceedings 49, no. 1: 154. https://doi.org/10.3390/proceedings2020049154
APA StyleMiyoshi, T., Kamada, Y., & Kobayashi, Y. (2020). Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings, 49(1), 154. https://doi.org/10.3390/proceedings2020049154