Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening and Subjects
2.2. Experimental Setup
2.3. Simulation of the EMG Activities
2.4. Principal Component Analysis
3. Results
4. Discussion
5. Conclusions
Funding
References
- Asai, T.; Kamemoto, K. Flow structure of knuckling effect in footballs. J. Fluid Str. 2011, 27, 727–733. [Google Scholar] [CrossRef]
- Kray, T.; Franke, J.; Frank, W. Magnus effect on a rotating soccer ball at high Reynolds numbers. J. Wind Eng. Indust. Aerodyn. 2014, 124, 46–53. [Google Scholar] [CrossRef]
- Nunome, H.; Lake, M.; Georgakis, A.; Stergioulas, L.K. Impact phase kinematics of instep kicking in soccer. J. Sport Sci. 2006, 24, 11–22. [Google Scholar] [CrossRef]
- Hong, S.; Chung, C.; Sakamoto, K.; Asai, T. Analysis of the swing motion on knuckling shot in soccer. Procedia Eng. 2011, 13, 176–181. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyoshi, T.; Takagi, M.; Kamada, Y. Synchronized Lower Limb Kinematics with Pelvis Orientation Achieve the Non-rotational Shot. Sport Eng. 2016, 19, 71–79. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyoshi, T.; Sato, S.; Takagi, M.; Kamada, Y.; Kobayashi, Y. Differences in soccer kicking type identified using principal component analysis. Sport Eng. 2018, 21, 149–159. [Google Scholar] [CrossRef]
- Ozaki, H.; Aoki, K. Kinematic and electromyographic analysis of infront curve soccer kick. Football Sci. 2008, 5, 26–36. [Google Scholar]
- Kang, K.T.; Koh, Y.G.; Nam, J.H.; Jung, M.; Kim, S.J.; Kim, S.H. Biomechanical evaluation of the influence of posterolateral corner structures on cruciate ligaments forces during simulated gait and squatting. PLoS ONE 2019, 14, e0214496. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, M.; Lee, K.K.; Lee, S.H. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine. Sensors 2017, 17, 299. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hobara, H.; Matsushita, S.; Mochimaru, M. Key joint kinematic characteristics of the gait of fallers identified by principal component analysis. J. Biomech. 2014, 47, 2424–2429. [Google Scholar] [CrossRef] [PubMed]
- Deluzio, K.J.; Astephen, J.L. Biomechanical features of gait waveform data associated with knee osteoarthritis: An application of principal component analysis. Gait Posture 2007, 25, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Federolf, P.; Reid, R.; Gilgien, M.; Haugen, P.; Smith, G. The application of principal component analysis to quantify technique in sports. Scand. J. Med. Sci. Sport 2014, 24, 491–499. [Google Scholar] [CrossRef] [PubMed]
Name of Muscle | Strength |
---|---|
Iliac m. | 0.39 ± 0.016 |
Gluteus medius m. | 0.91 ± 0.037 |
Rectus femoris m. | 1.24 ± 0.066 |
Vastus lateralis m. | 2.53 ± 0.135 |
Vastus medialis m. | 1.00 ± 0.053 |
Vastus intermedius m. | 0.54 ± 0.029 |
Biceps femoris m. | 2.33 ± 0.125 |
Semitendinosus m. | 1.26 ± 0.067 |
Semimembraneous m. | 1.47 ± 0.078 |
Sartorius m. | 0.51 ± 0.027 |
Tensor fasciae latae m. | 0.38 ± 0.020 |
Adductor longus m. | 0.22 ± 0.012 |
Adductor magnus m. | 0.32 ± 0.017 |
Gastrocnemius m. | 3.16 ± 0.135 |
Tibialis anterior m. | 0.64 ± 0.027 |
PCV1 | PCV2 | PCV3 | PCV4 | |
---|---|---|---|---|
Explained variance [%] | 28.79 | 10.06 | 7.74 | 4.96 |
Cumulative [%] | 28.79 | 38.85 | 46.59 | 51.55 |
IK: mean PCS (SD) | −0.038 ± 1.00 | −0.028 ± 0.67 | −0.47 ± 0.95 | −0.45 ± 0.96 |
NR shot: mean PCS (SD) | 0.038 ± 1.00 | 0.028 ± 1.3 | 0.47 ± 0.84 | 0.45 ± 0.85 |
p value | 0.840 | 0.880 | 0.008 | 0.011 |
PCV5 | PCV6 | PCV7 | PCV8 | |
Explained variance [%] | 4.43 | 3.98 | 3.56 | 2.96 |
Cumulative [%] | 55.98 | 59.96 | 63.52 | 66.48 |
IK: mean PCS (SD) | −0.35 ± 0.81 | −0.32 ± 0.84 | 0.25 ± 1.1 | 0.36 ± 0.96 |
NR shot: mean PCS (SD) | 0.35 ± 1.1 | 0.32 ± 1.1 | −0.25 ± 0.90 | −0.36 ± 0.94 |
p value | 0.054 | 0.076 | 0.176 | 0.046 |
PCV9 | PCV10 | |||
Explained variance [%] | 2.58 | 2.39 | ||
Cumulative [%] | 69.06 | 71.45 | ||
IK: mean PCS (SD) | 0.014 ± 1.1 | 0.12 ± 1.0 | ||
NR shot: mean PCS (SD) | −0.014 ± 0.92 | −0.12 ± 0.97 | ||
p value | 0.943 | 0.516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyoshi, T.; Kamada, Y.; Kobayashi, Y. Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings 2020, 49, 154. https://doi.org/10.3390/proceedings2020049154
Miyoshi T, Kamada Y, Kobayashi Y. Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings. 2020; 49(1):154. https://doi.org/10.3390/proceedings2020049154
Chicago/Turabian StyleMiyoshi, Tasuku, Yasuhisa Kamada, and Yoshiyuki Kobayashi. 2020. "Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis" Proceedings 49, no. 1: 154. https://doi.org/10.3390/proceedings2020049154
APA StyleMiyoshi, T., Kamada, Y., & Kobayashi, Y. (2020). Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis. Proceedings, 49(1), 154. https://doi.org/10.3390/proceedings2020049154