Effects of Vinyltriethoxysilane and Maleic Anhydride Grafted Polypropylenes on the Morphological, Thermal, Rheological, and Mechanical Properties of Polypropylene/Clay Nanocomposites †
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structural Characterizations
2.2. Thermal Behaviour
2.2.1. Thermal Stability
2.2.2. Melting and Crystallization Properties
2.3. Morphological Properties
2.4. Tensile Properties
4. Materials and Methods
4.1. Materials
4.2. Grafting Procedure
4.3. Nanocomposites’ Preparation
4.4. Characterizations and Techniques
Characterization of Functionalized PP
4.5. Morphology Studies
4.6. Thermal Properties (TGA and DSC)
- -
- First heating scan: Heating from 25 to 200 °C with a rate of 10 °C/min;
- -
- keeping the sample at 200 °C for 5 min to erase the thermal history;
- -
- first cooling scan: Cooling to −60 °C with a rate of 10 °C/min; and
- -
- second heating scan: Heating from −60 to 200 °C with a rate of 10 °C/min.
4.7. Rheological Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Lertwimolnun, W.; Vergnes, B. Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 2005, 46, 3462–3471. [Google Scholar] [CrossRef]
- Ding, C.; Jia, D.; He, H.; Guo, B.; Hong, H. How organo-montmorillonite truly affects the structure and properties of polypropylene. Polym. Test. 2005, 24, 94–100. [Google Scholar] [CrossRef]
- López-Quintanilla, M.L.; Sánchez-Valdés, S.; Ramos de Valle, L.F.; Medellín-Rodríguez, F.J. Effect of some compatibilizing agents on clay dispersion of polypropylene-clay nanocomposites. J. Appl. Polym. Sci. 2006, 100, 4748–4756. [Google Scholar] [CrossRef]
- Sengupta, S.S.; Parent, J.S.; McLean, J.K. Radical-mediated modification of polypropylene: Selective grafting via polyallyl coagents. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 4882–4893. [Google Scholar] [CrossRef]
- Bailly, M.; Kontopoulou, M. Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer 2009, 50, 2472–2480. [Google Scholar] [CrossRef]
- Lu, H.; Hu, Y.; Li, M.; Chen, Z.; Fan, W. Structure characteristics and thermal properties of silane-grafted- polyethylene/clay nanocomposite prepared by reactive extrusion. Compos. Sci. Technol. 2006, 66, 3035–3039. [Google Scholar] [CrossRef]
- Sánchez-Valdes, S.; Méndez-Nonell, J.; Medellín-Rodríguez, F.J.; Ramírez-Vargas, E.; Martínez-Colunga, J.G.; Soto-Valdez, H.; Munoz-Jimenez, L.; Neira-Velázquez, G. Effect of PEgMA/amine silane compatibilizer on clay dispersion of polyethylene- clay nanocomposites. Polym. Bull. 2009, 63, 921–933. [Google Scholar] [CrossRef]
- Dal Castel, C.; Pelegrini, T.; Barbosa, R.V.; Liberman, S.A.; Mauler, R.S. Properties of silane grafted polypropylene/montmorillonite nanocomposites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 185–191. [Google Scholar] [CrossRef]
- Liaw, W.-C.; Huang, P.-C.; Chen, C.-S.; Lo, C.-L.; Chang, J.-L. PPgMA/APTS compound coupling compatabilizer in PP/clay hybrid nanocomposite. J. Appl. Polym. Sci. 2008, 109, 1871–1880. [Google Scholar] [CrossRef]
- Russell, K.E. Free radical graft polymerization and copolymerization at higher temperatures. Prog. Polym. Sci. 2002, 27, 1007–1038. [Google Scholar] [CrossRef]
- Santos, K.S.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S. Polyolefin-based nanocomposites: The effect of organosilane on organoclay dispersion. J. Mater. Sci. 2013, 49, 70–78. [Google Scholar] [CrossRef]
- Nachtigall, S.M.B.; Stedile, F.C.; Felix, A.H.O.; Mauler, R.S. Polypropylene Functionalization with Vinyltriethoxysilane. J. Appl. Polym. Sci. 1998, 72, 1313–1319. [Google Scholar] [CrossRef]
- El Mabrouk, K.; Parent, J.S.; Chaudhary, B.I.; Cong, R. Chemical modification of PP architecture: Strategies for introducing long-chain branching. Polymer 2009, 50, 5390–5397. [Google Scholar] [CrossRef]
- Rogers, K.; Takacs, E.; Thompson, M.R. Contact angle measurement of select compatibilizers for polymer-silicate layer nanocomposites. Polym. Test. 2005, 24, 423–427. [Google Scholar] [CrossRef]
- Wiederrecht, G.P. Handbook of Nanofabrication; Elsevier: Boston, MA, USA; Amsterdam, The Netherlands, 2010. [Google Scholar]
- Giannelis, E.P.; Krishnamoorti, R.; Manias, E. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. Adv. Polym. Science. 1999, 138, 107–147. [Google Scholar]
- Devalckenaere, M.; Je, R.; Dubois, P.; Kubies, D. Poly (1-caprolactone)/clay nanocomposites prepared by melt intercalation: Mechanical, thermal and rheological properties. Polymer 2002, 43, 4017–4023. [Google Scholar]
- Zhu, J.; Morgan, A.B.; Lamelas, F.J.; Wilkie, C.A. Fire Properties of Polystyrene—Clay Nanocomposites. Chem. Mater. 2001, 13, 3774–3780. [Google Scholar] [CrossRef]
- Bureau, M.N.; Denault, J.; Cole, K.C.; Enright, G.D. The role of crystallinity and reinforcement in the mechanical behavior of polyamide-6/clay nanocomposites. Polym. Eng. Sci. 2002, 42, 1897–1906. [Google Scholar] [CrossRef]
- Ray, S.S. Rheology of Polymer / Layered Silicate Nanocomposites. J. Ind. Eng. Chem. 2006, 12, 811–842. [Google Scholar]
- Kim, D.H.; Fasulo, P.D.; Rodgers, W.R.; Paul, D.R. Structure and properties of polypropylene-based nanocomposites: Effect of PP-g-MA to organoclay ratio. Polymer 2007, 48, 5308–5323. [Google Scholar] [CrossRef]
- Hyun, Y.H.; Lim, S.T.; Choi, H.J.; Jhon, M.S. Rheology of Poly(ethylene oxide)/Organoclay Nanocomposites. Macromolecules 2001, 34, 8084–8093. [Google Scholar] [CrossRef]
- Liang, J.-Z. Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): A review. J. Appl. Polym. Sci. 2002, 83, 1547–1555. [Google Scholar] [CrossRef]
Sample | T5% (°C) | Improvement (°C) | Tmax (°C) | Improvement (°C) |
---|---|---|---|---|
PP | 265 | reference | 334 | reference |
PP-g-Si | 247 | −18 | 316 | −18 |
PP/PP-g-Si | 256 | −9 | 333 | −1 |
PP/PP-g-Si/C20A3 | 270 | 5 | 377 | 43 |
PP/PP-g-Si/C20A5 | 275 | 10 | 384 | 50 |
PP/PP-g-Si/C20A8 | 279 | 14 | 392 | 58 |
PP-g-MA | 249 | −16 | 327 | −7 |
PP/PP-g-MA | 265 | 0 | 350 | 16 |
PP/PP-g-MA/C20A3 | 273 | 8 | 423 | 89 |
PP/PP-g-MA/C20A5 | 288 | 23 | 432 | 98 |
PP/PP-g-MA/C20A8 | 297 | 35 | 427 | 93 |
Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) | Xc (%) | |
---|---|---|---|---|---|
PP | 114.79 | 105.18 | 165.34 | 105.66 | 50.50 |
PP/PP-g-Si | 122.31 | 108.84 | 165.34 | 108.66 | 51.92 |
PP/PP-g-MA | 115.70 | 106.20 | 166.91 | 104.46 | 49.93 |
PP/PP-g-Si/C20A3 | 127.25 | 103.20 | 167.01 | 105.60 | 52.03 |
PP/PP-g-Si/C20A5 | 128.09 | 105.30 | 167.00 | 109.26 | 54.97 |
PP/PP-g-Si/C20A8 | 131.08 | 102.36 | 168.60 | 104.82 | 54.46 |
PP/PP-g-MA/C20A3 | 114.75 | 102.54 | 166.99 | 99.66 | 49.11 |
PP/PP-g-MA/C20A5 | 114.89 | 101.58 | 166.12 | 97.62 | 49.14 |
PP/PP-g-MA/C20A8 | 123.92 | 99.48 | 168.56 | 100.56 | 51.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risite, H.; Oualid, H.A.; Mabrouk, K.E. Effects of Vinyltriethoxysilane and Maleic Anhydride Grafted Polypropylenes on the Morphological, Thermal, Rheological, and Mechanical Properties of Polypropylene/Clay Nanocomposites. Proceedings 2019, 3, 6. https://doi.org/10.3390/IOCN_2018-1-05500
Risite H, Oualid HA, Mabrouk KE. Effects of Vinyltriethoxysilane and Maleic Anhydride Grafted Polypropylenes on the Morphological, Thermal, Rheological, and Mechanical Properties of Polypropylene/Clay Nanocomposites. Proceedings. 2019; 3(1):6. https://doi.org/10.3390/IOCN_2018-1-05500
Chicago/Turabian StyleRisite, Heriarivelo, Hicham Abou Oualid, and Khalil El Mabrouk. 2019. "Effects of Vinyltriethoxysilane and Maleic Anhydride Grafted Polypropylenes on the Morphological, Thermal, Rheological, and Mechanical Properties of Polypropylene/Clay Nanocomposites" Proceedings 3, no. 1: 6. https://doi.org/10.3390/IOCN_2018-1-05500
APA StyleRisite, H., Oualid, H. A., & Mabrouk, K. E. (2019). Effects of Vinyltriethoxysilane and Maleic Anhydride Grafted Polypropylenes on the Morphological, Thermal, Rheological, and Mechanical Properties of Polypropylene/Clay Nanocomposites. Proceedings, 3(1), 6. https://doi.org/10.3390/IOCN_2018-1-05500