Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate †
Abstract
:1. Introduction
- large splitting between heavy-hole and light-hole valence sub-bands due to strain in SLs contributes to the suppression of Auger generation-recombination (GR) mechanisms;
- not directly bandgap energy dependent effective masses leading to reduction of tunneling currents in SL detectors
- less ionic chemical bonding of III-V semiconductors leading to better stability.
2. Experimental Results
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Aytac, Y.; Olson, B.V.; Kim, J.K.; Shaner, E.A.; Hawkins, S.D.; Klem, J.F.; Flatte, M.E.; Boggess, T.F. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices. Appl. Phys. Lett. 2014, 105, 022107. [Google Scholar] [CrossRef]
- Olson, B.V.; Shaner, E.A.; Kim, J.K.; Klem, J.F.; Hawkins, S.D.; Flatté, M.E.; Boggess, T.F. Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 2013, 103, 052106. [Google Scholar]
- White, M. Infrared Detectors. U.S. Patent 4,679,063, 22 September 1983. [Google Scholar]
- Klipstein, P.C. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640, 2 July 2003. [Google Scholar]
- Maimon, S.; Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Ting, D.Z.-Y.; Soibel, A.; Höglund, L.; Nguyen, J.; Hill, C.J.; Khoshakhlagh, A.; Gunapala, S.D. Type-II superlattice infrared detectors. In Semiconductors and Semimetals; Gunapala, S.D., Rhiger, D.R., Jagadish, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 84, pp. 1–57. [Google Scholar]
- Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; Kębłowski, A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 2016, 24, 40–45. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopytko, M.; Gomółka, E.; Manyk, T.; Michalczewski, K.; Kubiszyn, Ł.; Rutkowski, J.; Martyniuk, P. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 2019, 27, 37. https://doi.org/10.3390/proceedings2019027037
Kopytko M, Gomółka E, Manyk T, Michalczewski K, Kubiszyn Ł, Rutkowski J, Martyniuk P. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings. 2019; 27(1):37. https://doi.org/10.3390/proceedings2019027037
Chicago/Turabian StyleKopytko, Małgorzata, Emilia Gomółka, Tetiana Manyk, Krystian Michalczewski, Łukasz Kubiszyn, Jarosław Rutkowski, and Piotr Martyniuk. 2019. "Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate" Proceedings 27, no. 1: 37. https://doi.org/10.3390/proceedings2019027037
APA StyleKopytko, M., Gomółka, E., Manyk, T., Michalczewski, K., Kubiszyn, Ł., Rutkowski, J., & Martyniuk, P. (2019). Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings, 27(1), 37. https://doi.org/10.3390/proceedings2019027037