Approaches to the Study of Salt Weathering of Geological Materials †
Abstract
:1. Introduction
2. Analysis of Publications
3. Final Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Arnold, A.; Zehnder, K. Monitoring wall paintings affected by soluble salts. In The Conservation of Wall Paintings; Cather, S., Ed.; Getty Conservation Institute: Marina del Rey, CA, USA, 1991; pp. 103–135. [Google Scholar]
- Alves, C.; Figueiredo, C.; Maurício, A. Water-stone Interaction in contemporary works of the built environment. Procedia Earth Planet. Sci. 2017, 17, 320–323. [Google Scholar] [CrossRef]
- Seiki, T.; Satoh, A.; Kikuchi, K. Weathering mechanisms and mechanical property changes of Oya tuff. In Harmonising Rock Engineering and the Environment, Proceedings of the 12th ISRM International Congress on Rock Mechanics, Beijing, China, 18–21 October 2011; Qian, Q., Zhou, Y., Eds.; CRC Press: Boca Raton, FL, USA; pp. 821–824.
- Cámara, B.; De Buergo, M.Á.; Fort, R.; Ascaso, C.; De Los Ríos, A.; Gomez-Heras, M. Another source of soluble salts in urban environments due to recent social behaviour pattern in historical centres. In Science, Technology and Cultural Heritage, Proceedings of the Second International Congress on Science and Technology for the Conservation of Cultural Heritage, Sevilla, Spain, 24–27 June 2014; Rogerio-Candelera, M.A., Ed.; Rogerio-Candelera, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 89–94. [Google Scholar]
- Alves, C.; Figueiredo, C.; Maurício, A. A Critical Discussion of Salt Weathering Laboratory Tests for Assessment of Petrological Features Susceptibility. Procedia Earth Planet. Sci. 2017, 17, 324–327. [Google Scholar] [CrossRef]
- Lubelli, B.; Cnudde, V.; Diaz-Goncalves, T.; Franzoni, E.; Van Hees, R.P.J.; Ioannou, I.; Menendez, B.; Nunes, C.; Siedel, H.; Stefanidou, M.; et al. Towards a more effective and reliable salt crystallization test for porous building materials: state of the art. Mater. Struct. 2018, 51, 55. [Google Scholar] [CrossRef]
- Yu, S.; Oguchi, C.T. Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng. Geol. 2010, 115, 226–236. [Google Scholar] [CrossRef]
- Yavuz, A.B. Durability assessment of the Alaçatı tuff (Izmir) in western Turkey. Environ. Earth Sci. 2012, 67, 1909–1925. [Google Scholar] [CrossRef]
- López-Doncel, R.; Wedekind, W.; Leiser, T.; Molina-Maldonado, S.; Velasco-Sánchez, A.; Dohrmann, R.; Kral, A.; Wittenborn, A.; Aguillon-Robles, A.; Siegesmund, S. Salt bursting tests on volcanic tuff rocks from Mexico. Environ. Earth Sci. 2016, 75, 212. [Google Scholar] [CrossRef]
- Germinario, L.; Siegesmund, S.; Maritan, L.; Mazzoli, C. Petrophysical and mechanical properties of Euganean trachyte and implications for dimension stone decay and durability performance. Environ. Earth Sci. 2017, 76, 739. [Google Scholar] [CrossRef]
- Özşen, H.; Bozdağ, A.; Ince, I. Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey. Arab. J. Geosci. 2017, 10, 258. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Aygün, A. The effect of salt crystallization on degradation of volcanic building stones by sodium sulfates and sodium chlorides. Bull. Int. Assoc. Eng. Geol. 2018, 78, 3509–3529. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Pola, A.; Garcia-Sanchez, L.; Agustin, G.R.; Ocampo, L.S.O.; Vázquez, J.L.M.; Robles-Camacho, J. Building stones used in the architectural heritage of Morelia (México): Quarries location, rock durability and stone compatibility in the monument. Environ. Earth Sci. 2018, 77, 167. [Google Scholar] [CrossRef]
- Pötzl, C.; Siegesmund, S.; Dohrmann, R.; Koning, J.M.; Wedekind, W. Deterioration of volcanic tuff rocks from Armenia: constraints on salt crystallization and hydric expansion. Environ. Earth Sci. 2018, 77, 660. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A laboratory experiment on salt weathering by humidity change: salt damage induced by deliquescence and hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Zalooli, A.; Freire-Lista, D.M.; Khamehchiyan, M.; Nikudel, M.R.; Fort, R.; Ghasemi, S. Ghaleh-khargushi rhyodacite and Gorid andesite from Iran: characterization, uses, and durability. Environ. Earth Sci. 2018, 77, 315. [Google Scholar] [CrossRef]
- López-Arce, P.; Varas-Muriel, M.; Fernández-Revuelta, B.; De Buergo, M. Álvarez; Fort, R.; Pérez-Soba, C. Artificial weathering of Spanish granites subjected to salt crystallization tests: Surface roughness quantification. Catena 2010, 83, 170–185. [Google Scholar] [CrossRef]
- Silva, Z.C.G.; Simão, J.A.; Sá, M.H.; Leal, N.; Silva, Z.C. Rock Finishing and Response to Salt Fog Atmosphere. Key Eng. Mater. 2013, 548, 275–286. [Google Scholar] [CrossRef]
- Vázquez, P.; Luque, A.; Alonso, F.J.; Grossi, C.M. Surface changes on crystalline stones due to salt crystallisation. Environ. Earth Sci. 2013, 69, 1237–1248. [Google Scholar] [CrossRef]
- Cerrillo, C.; Jiménez, A.; Rufo, M.; Paniagua, J.M.; Pachón, F. New contributions to granite characterization by ultrasonic testing. Ultrason 2014, 54, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Vasconcelos, G.; Lourenço, P.; Palha, C.; Edgell, G.; Modena, C.; Da Porto, F.; Valluzzi, M. Influence of the salt crystallization in the durability of granites used in vernacular masonry buildings. In Brick and Block Masonry; Informa UK Limited: London, UK, 2016; pp. 517–524. [Google Scholar]
- Sousa, L.; Siegesmund, S.; Wedekind, W. Salt weathering in granitoids: an overview on the controlling factors. Environ. Earth Sci. 2018, 77, 502. [Google Scholar] [CrossRef]
- Vázquez-Nion, D.; Troiano, F.; Sanmartín, P.; Valagussa, C.; Cappitelli, F.; Prieto, B. Secondary bioreceptivity of granite: effect of salt weathering on subaerial biofilm growth. Mater. Struct. 2018, 51, 158. [Google Scholar] [CrossRef]
- Graus, S.; Vasconcelos, G.; Palha, C. Experimental Characterization of the Deterioration of Masonry Materials Due to Wet and Dry and Salt Crystallization Cycles. In RILEM Bookseries; Springer Science and Business Media LLC: Berlin, Germany, 2019; Volume 18, pp. 687–695. [Google Scholar]
- Martínez-Martínez, J.; Benavente, D.; García-Del-Cura, M. Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng. Geol. 2011, 119, 84–95. [Google Scholar] [CrossRef]
- Navarro, R.; Cruz, A.S.; Arriaga, L.; Baltuille, J.M. Caracterización de los principales tipos de mármol extraídos en la comarca de Macael (Almería, sureste de España) y su importancia a lo largo de la historia. Boletín Geológico Y Minero 2017, 128, 345–361. [Google Scholar] [CrossRef]
- Vazquez, P.; Sartor, L.; Thomachot-Schneider, C. Influence of substrate and temperature on the crystallization of KNO3 droplets studied by infrared thermography. Prog. Earth Planet. Sci. 2018, 5, 75. [Google Scholar] [CrossRef]
- Ricardo, A.M.; Barroso, E.V.; Mansur, K.; Vasquez, G.F.; Ribeiro, R.C.C. Rock Decay by Salt Crystallization and Seismic Signature. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017; American Rock Mechanics Association: Alexandria, VA, USA, 2017; Volume 2, pp. 1350–1354. [Google Scholar]
- Bala’awi, F.; Alshawabkeh, Y.; Alawneh, F.; Masri, E.A. Damage assessment and digital 2D-3D documentation of Petra treasury. Mediterr. Archaeol. Archaeom. 2012, 12, 21–41. [Google Scholar]
- Přikryl, R.; Weishauptová, Z.; Novotná, M.; Přikrylová, J.; Št’astná, A. Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles Bridge in Prague (Czech Republic) and an analytical study for the causes of its rapid decay. Environ. Earth Sci. 2011, 63, 1623–1639. [Google Scholar] [CrossRef]
- Modestou, S.; Theodoridou, M.; Ioannou, I. Micro-destructive mapping of the salt crystallization front in limestone. Eng. Geol. 2015, 193, 337–347. [Google Scholar] [CrossRef]
- Zoghlami, K.; Lopez-Arce, P.; Zornoza-Indart, A. Differential Stone Decay of the Spanish Tower Façade in Bizerte, Tunisia. J. Mater. Civ. Eng. 2017, 29, 05016005. [Google Scholar] [CrossRef]
- Boumezbeur, A.; Hmaidia, H.; Belhocine, B. Limestone Weathering and Deterioration in the Tebessa Roman Wall N E Algeria. In Engineering Geology for Society and Territory; Springer Science and Business Media LLC: Berlin, Germany, 2014; Volume 8, pp. 169–174. [Google Scholar]
- Zezza, F. Digital Image Processing in Weathering Damage Analysis and Recovery Treatments Monitoring. In Computer Vision—ECCV 2012; Springer Science and Business Media LLC: Berlin, Germany, 2010; Volume 6436, pp. 71–84. [Google Scholar]
- Kamh, G.M.E.; Koltuk, S. Micro-topographic and Geotechnical Investigations of sandstone Wall on Weathering Progress, Aachen City, Germany, case study. Arab. J. Sci. Eng. 2016, 41, 2285–2294. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Lubelli, B.; Sawdy, A.; van Hees, R.; Price, C.; Rodriguez-Navarro, C. An integrated methodology for salt damage assessment and remediation: the case of San Jerónimo Monastery (Granada, Spain). Environ. Earth Sci. 2011, 63, 1475–1486. [Google Scholar] [CrossRef]
- Columbu, S.; Piras, G.; Sitzia, F.; Pagnotta, S.; Raneri, S.; Legnaioli, S.; Palleschi, V.; Lezzerini, M.; Giamello, M. Petrographic and mineralogical characterization of volcanic rocks and surface-depositions on Romanesque Monuments. Mediterr. Archaeol. Archaeom. 2018, 18, 37–64. [Google Scholar]
- Hosono, T.; Uchida, E.; Suda, C.; Ueno, A.; Nakagawa, T. Salt weathering of sandstone at the Angkor monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes. J. Archaeol. Sci. 2006, 33, 1541–1551. [Google Scholar] [CrossRef]
- Siedel, H.; Pfefferkorn, S.; Von Plehwe-Leisen, E.; Leisen, H. Sandstone weathering in tropical climate: Results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Eng. Geol. 2010, 115, 182–192. [Google Scholar] [CrossRef]
- Rivas, T.; Pozo, S.; Paz, M.; Antonio, J.S.P. Sulphur and oxygen isotope analysis to identify sources of sulphur in gypsum-rich black crusts developed on granites. Sci. Total. Environ. 2014, 482, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Kloppmann, W.; Bromblet, P.; Vallet, J.; Vergès-Belmin, V.; Rolland, O.; Guerrot, C.; Gosselin, C. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S). Sci. Total. Environ. 2011, 409, 1658–1669. [Google Scholar] [CrossRef]
- Egartner, I.; Sass, O. Using paper pulp poultices in the field and laboratory to analyse salt distribution in building limestones. Heritage Sci. 2016, 4, 2039. [Google Scholar] [CrossRef]
- Hermo, B.S.; Lamas, B.P.; Brea, T.R.; Pardo, L.P. Origen y efectos deteriorantes del yeso en monumentos graníticos del noroeste de España. Materiales de Construcción 2010, 60, 97–110. [Google Scholar] [CrossRef]
- Warke, P.A.; Smith, B.J.; Lehane, E. Micro-environmental change as a trigger for granite decay in offshore Irish lighthouses: implications for the long-term preservation of operational historic buildings. Environ. Earth Sci. 2011, 63, 1415–1431. [Google Scholar] [CrossRef]
- Costa, D. The dialogue between stone and environment: Learning from practice. In Science, Technology and Cultural Heritage; Rogerio-Candelera, M.A., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 471–476. [Google Scholar]
- Pozo-Antonio, J.; Pereira, M.; Rocha, C.; Puente, I.; Figueiredo, C.; Antonio, J.S.P. Comparative study of deterioration forms on nearby granitic bridges from an urban setting in the NW Iberian Peninsula. Geomorphology 2016, 274, 11–30. [Google Scholar] [CrossRef]
- Antonelli, F.; Lazzarini, L.; Cancelliere, S.; Tesser, E. Study of the deterioration products, gilding, and polychromy of the stones of the Scuola Grande Di San Marco’s façade in Venice. Stud. Conserv. 2016, 61, 74–85. [Google Scholar] [CrossRef]
- Matović, V.; Vasković, N.; Erić, S.; Srećković-Batoćanin, D. Interaction between binding materials—The cause of damage to gabbro stone on the monument to the unknown soldier (Serbia). Environ. Earth Sci. 2010, 60, 1153–1164. [Google Scholar] [CrossRef]
- Bader, N.A.; Moubark, K.M.; El-Hakim El- Badry, A. Investigation of environmentally driven deterioration of diorite statues in Mut Temple, Egypt and concepts for conservation. Mediterr. Archaeol. Archaeom. 2015, 15, 187–199. [Google Scholar]
- Cann, J.H. Physical weathering of slate gravestones in a Mediterranean climate. Aust. J. Earth Sci. 2012, 59, 1021–1032. [Google Scholar] [CrossRef]
- Peñas Castejón, J.M.; Maciá Sánchez, J.F.; Jiménez Medina, M.P.; Peñalver Martínez, M.J. Cyclical salt efflorescence weathering: an invisible threat to the recovery of underground mine environment for tourist exploitation. Environ. Earth Sci. 2014, 72, 1901–1913. [Google Scholar] [CrossRef]
- Küng, A.; Zehnder, K. Pickeringite: A deleterious salt on buildings. Stud. Conserv. 2016, 62, 1–5. [Google Scholar] [CrossRef]
- Ribeiro, R.C.D.C.; De Figueiredo, P.M.F.; Barbutti, D.S.; Ribeiro, R.D.C. Multi-Analytical Investigation of Stains on Dimension Stones in Master Valentim’s Fountain, Brazil. Minerrals 2018, 8, 465. [Google Scholar] [CrossRef]
- Gaylarde, C.; Neto, J.A.B.; Tabasco-Novelo, C.; Ortega-Morales, O. Weathering of granitic gneiss: A geochemical and microbiological study in the polluted sub-tropical city of Rio de Janeiro. Sci. Total Environ. 2018, 644, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, J.; Benavente, D.; Jiménez Gutiérrez, S.; García-del-Cura, M.A.; Ordóñez, S. Stone weathering under Mediterranean semiarid climate in the fortress of Nueva Tabarca island (Spain). Build. Environ. 2017, 121, 262–276. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, C.; Figueiredo, C. Approaches to the Study of Salt Weathering of Geological Materials. Proceedings 2019, 24, 5. https://doi.org/10.3390/IECG2019-06198
Alves C, Figueiredo C. Approaches to the Study of Salt Weathering of Geological Materials. Proceedings. 2019; 24(1):5. https://doi.org/10.3390/IECG2019-06198
Chicago/Turabian StyleAlves, Carlos, and Carlos Figueiredo. 2019. "Approaches to the Study of Salt Weathering of Geological Materials" Proceedings 24, no. 1: 5. https://doi.org/10.3390/IECG2019-06198
APA StyleAlves, C., & Figueiredo, C. (2019). Approaches to the Study of Salt Weathering of Geological Materials. Proceedings, 24(1), 5. https://doi.org/10.3390/IECG2019-06198