Remote Sensing Data for Calibrated Assessment of Wildfire Emissions in Siberian Forests †
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Fire Danger Scenarios and Relative Burned Area
3.2. FRP Data and Ratio of Burned Areas
3.3. Assessment of Combusted Biomass and Direct Carbon Emissions
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
FRP | Fire Radiative Power |
RBA | Relative Burned Area |
References
- Ponomarev, E.I.; Kharuk, V.I. Wildfire Occurrence in Forests of the Altai–Sayan Region under Current Climate Changes. Contemp. Probl. Ecol. 2016, 9, 29–36. [Google Scholar] [CrossRef]
- Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W., Jr.; McRae, D.J.; Conard, S.G. Estimating fire emissions and disparities in boreal Siberia (1998–2002). J. Geophys. Res. 2004, 109, D14S06. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Shchepashchenko, D.G.; Vaganov, E.A.; Sukhinin, A.I.; Maksyutov, S.; McCallum, I.; Lakyda, I.P. Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Dokl. Earth Sci. 2011, 441, 1678–1682. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G.; Grabovskii, V.I.; Kraev, G.N. Dynamics of Carbon Budget in Forests of Russia for Last Twenty Years. Forestry 2011, 6, 16–28. (In Russian) [Google Scholar]
- Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Ivanova, G.A.; Ivanov, V.A.; Kukavskaya, Е.А.; Conard, S.G.; McRae, D.J. Effect of Fires on Carbon Emission in the Pine Forests of Middle Siberia. Sib. J. Ecol. 2007, 14, 885–895. (In Russian) [Google Scholar]
- Bondur, V.G.; Gordo, K.A.; Kladov, V.L. Spatial and Temporal Distributions of Wildfire Areas and Carbon-Bearing Gas and Aerosol Emissions in North Eurasia Based on Satellite Monitoring Data. Issledovanie Zemli iz Kosmosa (Remote Sens.) 2016, 6, 3–20. (In Russian) [Google Scholar] [CrossRef]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2017, 1–14. [Google Scholar] [CrossRef]
- McRae, D.J.; Conard, S.G.; Ivanova, G.A.; Sukhinin, A.I.; Baker, S.P.; Samsonov, Y.N.; Blake, T.W.; Ivanov, V.A.; Ivanov, A.V.; Churkina, T.V.; et al. Variability of Fire Behavior, Fire Effects and Emissions in Scotch Pine Forests of Central Siberia. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 45–74. [Google Scholar] [CrossRef]
- Kukavskaya, E.; Soja, A.; Petkov, A.; Ponomarev, E.; Ivanova, G.; Conard, S. Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption. Сan. J. For. Res. 2013, 43, 493–506. [Google Scholar] [CrossRef]
- Glagolev, M.V.; Sabrekov, A.F. Reply to А.V. Smagin: II. Carbon balance in Russia. Dyn. Environ. Glob. Clim. Chang. 2014, 5, 50–69. (In Russian) [Google Scholar]
- Ichoku, C.; Kaufman, Y.J. A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2636–2649. [Google Scholar] [CrossRef]
- Vermote, E.; Ellicott, E.; Dubovik, O.; Lapyonok, T.; Chin, M.; Giglio, L.; Roberts, G.J. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 2009, 114, 1–22. [Google Scholar] [CrossRef]
- Safronov, A.N.; Fokeeva, E.V.; Rakitin, V.S.; Grechko, E.I.; Shumsky, R.A. Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations. Remote Sens. 2015, 7, 395–429. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Egorov, V.A.; Ershov, D.V.; Isaev, A.S.; Loupian, E.A.; Plotnikov, D.E.; Uvarov, I.A. Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data. Curr. Probl. Remote Sens. Earth Space 2011, 8, 285–302. (In Russian) [Google Scholar]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide, Version 2.5; Dep. of Geogr. Univ. of Maryland: College Park, MD, USA, 2013; p. 61. [Google Scholar]
- Ponomarev, E.I.; Shvetsov, E.G. Satellite detection of forest fires and geoinformation methods for calibrating of the result. Issledovanie Zemli iz Kosmosa (Remote Sens.) 2015, 1, 84–91. (In Russian) [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Seiler, W.; Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Tsvetkov, P.A. Adaptation of Larix gmelinii to Fires in the Northern Taiga of Central Siberia. Sib. J. Ecol. 2005, 1, 117–129. (In Russian) [Google Scholar]
- de Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Litvintsev, K.Y.; Amelchugov, S.P.; Gavrilov, A.A.; Dekterev, A.A.; Negin, V.A.; Kharlamov, E.B.; Software for Numerical Simulation of Fire Dynamics (σFire); Certificate No. 2010613073; 2010. Available online: http://3ksigma.ru/wp-content/uploads/2017/10/Manual_SigmaPB_v4.pdf (accessed on 22 February 2018).
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, J.K. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Shvetsov, E.G.; Usataya, Y.O. Registration of Wildfire Energy Characteristics in Siberian Forests Using Remote Sensing. Issledovanie Zemli iz Kosmosa (Remote Sens.) 2017, 4, 3–11. (In Russian) [Google Scholar] [CrossRef]
- Bartalev, S.A.; Stytsenko, F.V.; Egorov, V.A.; Loupian, E.A. Satellite assessment of fire-caused forest mortality in Russia. Forestry (Lesovedenie) 2015, 2, 83–94. (In Russian) [Google Scholar]
- Kasischke, E.S.; Bruhwiler, L.P. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J. Geophys. Res. 2003, 108, 8146. [Google Scholar] [CrossRef]
N | Scenario | P{E} (Min–Max) | Period, Years | Relative Burned Area (RBA), % (Min–Max) |
---|---|---|---|---|
1 | I (extreme) | 0,18–0.20 | 8 ± 3 | 4.5–14.5 |
2 | IIa (moderate/spring) | 0.24–0.57 | 4 ± 1 | 0.5–1.5 |
3 | IIb (moderate/summer) | 0.24–0.38 | 3 ± 1 | 1.0–4.0 |
4 | III (low) | 0.19–0.48 | 4 ± 2 | 0.01–0.3 |
Dominant Tree Species | Portion of the Total Burned Area | Number of Samples | |||||
---|---|---|---|---|---|---|---|
Low Intensity | Medium Intensity | High Intensity | |||||
% | σ | % | σ | % | σ | ||
Larch | 42.28 | 15.8 | 46.04 | 11.48 | 11.68 | 7.88 | 4339 |
Pine | 43.67 | 15.48 | 44.60 | 11.26 | 11.73 | 8.48 | 1646 |
Dark coniferous | 47.32 | 12.76 | 41.74 | 8.00 | 10.94 | 7.10 | 985 |
Deciduous | 43.64 | 17.25 | 42.92 | 13.20 | 13.44 | 7.15 | 424 |
For all types | 47.04 | 13.6 | 42.46 | 10.50 | 10.50 | 6.90 | 7394 |
Method | M | C | Relative Difference (4) | |||||
---|---|---|---|---|---|---|---|---|
×1012 kg | σ | Confidence Interval(α = 0.1) | Tg/Year | σ | Confidence Interval(α = 0.1) | % | σ | |
(1), (2) | 0.192 | 0.131 | 0.067 | 111.9 | 68.4 | 25.4 | 17.3 | 1.8 |
(1), (2), (3) | 0.159 | 0.108 | 0.055 | 83.1 | 56.5 | 21.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarev, E.; Shvetsov, E.; Litvintsev, K.; Bezkorovaynaya, I.; Ponomareva, T.; Klimchenko, A.; Ponomarev, O.; Yakimov, N.; Panov, A. Remote Sensing Data for Calibrated Assessment of Wildfire Emissions in Siberian Forests. Proceedings 2018, 2, 348. https://doi.org/10.3390/ecrs-2-05161
Ponomarev E, Shvetsov E, Litvintsev K, Bezkorovaynaya I, Ponomareva T, Klimchenko A, Ponomarev O, Yakimov N, Panov A. Remote Sensing Data for Calibrated Assessment of Wildfire Emissions in Siberian Forests. Proceedings. 2018; 2(7):348. https://doi.org/10.3390/ecrs-2-05161
Chicago/Turabian StylePonomarev, Evgenii, Eugene Shvetsov, Kirill Litvintsev, Irina Bezkorovaynaya, Tatiana Ponomareva, Alexander Klimchenko, Oleg Ponomarev, Nikita Yakimov, and Alexey Panov. 2018. "Remote Sensing Data for Calibrated Assessment of Wildfire Emissions in Siberian Forests" Proceedings 2, no. 7: 348. https://doi.org/10.3390/ecrs-2-05161
APA StylePonomarev, E., Shvetsov, E., Litvintsev, K., Bezkorovaynaya, I., Ponomareva, T., Klimchenko, A., Ponomarev, O., Yakimov, N., & Panov, A. (2018). Remote Sensing Data for Calibrated Assessment of Wildfire Emissions in Siberian Forests. Proceedings, 2(7), 348. https://doi.org/10.3390/ecrs-2-05161