Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors †
Abstract
:1. Introduction
2. Methods
2.1. Instrumentation
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion & Conclusions
Acknowledgments
Conflicts of Interest
References
- James, D.; Davey, N. Swimming Stroke Analysis Using Multiple Accelerometer Devices and Tethered Systems. In The Impact of Technology on Sport II; CRC Press: Boca Raton, FL, USA, 2007; pp. 577–582. [Google Scholar]
- Davey, N.; Anderson, M.; James, D.A. Validation trial of an accelerometer-based sensor platform for swimming. J. Sports Technol. 2008, 1, 202–207. [Google Scholar] [CrossRef]
- Le Sage, T.; Bindel, A.; Conway, P.; Justham, L.; Slawson, S.; West, A. Embedded programming and real-time signal processing of swimming strokes. Sports Eng. 2011, 14, 1–14. [Google Scholar] [CrossRef]
- Stamm, A.; James, D.A.; Hagem, R.M.; Thiel, D.V. Investigating Arm Symmetry in Swimming using Inertial Sensors. In Proceedings of the IEEE Sensors 2012, Taipei, Taiwan, 28–31 October 2012. [Google Scholar]
- Khoo, B.H.; Lee, B.K.J.; Senanayake, S.M.N.A.; Wilson, B.D. System for determining within-stroke variations of speed in swimming (SWiSS). In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, Singapore, 14–17 July 2009; pp. 1927–1932. [Google Scholar]
- Le Sage, T.; Conway, P.; Justham, L.; Slawson, S.; Bindel, A.; West, A. A Component based Integrated System for Signal Processing of Swimming Performance. In Proceedings of the SIGMAP, Athen, Greece, 26–28 July 2010; pp. 73–79. [Google Scholar]
- Daukantas, S.; Marozas, V.; Lukosevicius, A. Inertial sensor for objective evaluation of swimmer performance. In Proceedings of the 11th International Biennial Baltic Electronics Conference, Tallinn, Estonia, 6–8 October 2008; pp. 321–324. [Google Scholar]
- Bächlin, M.; Tröster, G. Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive Mob. Comput. 2011, 8, 68–81. [Google Scholar] [CrossRef]
- Stamm, A.; James, D.; Thiel, D. Velocity profiling using inertial sensors for freestyle swimming. Sports Eng. 2012, 16, 1–11. [Google Scholar] [CrossRef]
- Stamm, A.; Thiel, D.V.; Burkett, B.; James, D.A. Towards determining absolute velocity of freestyle swimming using 3-axis accelerometers. Procedia Eng. 2011, 13, 120–125. [Google Scholar] [CrossRef]
- Stamm, A.; James, D.A.; Burkett, B.B.; Hagem, R.M.; Thiel, D.V. Determining Maximum Push-off Velocity in Swimming Using Accelerometers. Procedia Eng. 2013, 60, 201–207. [Google Scholar] [CrossRef]
- Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993, 25, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Avalos, M.; Hellard, P.; Chatard, J.C. Modeling the Training-Performance Relationship Using a Mixed Model in Elite Swimmers. Med. Sci. Sports Exerc. 2003, 35, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Stamm, A.; Thiel, D.; Burkett, B.J.; James, D.A. Roadmapping performance enhancement measures and technology in swimming. In The Impact of Technology in Sport II; CRC Press: Boca Raton, FL, USA, 2009; pp. 213–217. [Google Scholar]
- Stamm, A.; Thiel, D.V. Investigating Forward Velocity and Symmetry in Freestyle Swimming Using Inertial Sensors. Procedia Eng. 2015, 112, 522–527. [Google Scholar] [CrossRef]
- Hagem, R.M.; Haelsig, T.; O’Keefe, S.G.; Stamm, A.; Fickenscher, T.; Thiel, D.V. Second Generation Swimming Feedback Device Using a Wearable Data Processing System based on Underwater Visible Light Communication. Procedia Eng. 2013, 60, 34–39. [Google Scholar] [CrossRef]
- Hagem, R.M.; Sabti, H.A.; Thiel, D.V. Coach-Swimmer Communications Based on Wrist Mounted 2.4 GHz Accelerometer Sensor. Procedia Eng. 2015, 112, 512–516. [Google Scholar] [CrossRef]
- James, D.A.; Leadbetter, R.I.; Neeli, M.R.; Burkett, B.J.; Thiel, D.V.; Lee, J.B. An integrated swimming monitoring system for the biomechanical analysis of swimming strokes. Sports Technol. 2011, 4, 141–150. [Google Scholar] [CrossRef]
- Swift Performance Equipment. Swift Sports Speed Probe 5000V. Available online: http://www.spe.com.au/ (accessed on 28 August 2010).
- Lai, A.; James, D.A.; Hayes, J.P.; Harvey, E.C. Semi-automatic calibration technique using six inertial frames of reference. In Proceedings of the Microelectronics: Design, Technology, and Packaging, Perth, Australia, 30 March 2004. [Google Scholar]
- James, D.A.; Wixted, A. ADAT: A Matlab toolbox for handling time series athlete performance data. Procedia Eng. 2011, 13, 451–456. [Google Scholar] [CrossRef]
Swimmer Number | Height (cm) | Mass (kg) | Age (Years) | Experience | Gender |
---|---|---|---|---|---|
1 | 182 | 73 | 18 | National | Male |
2 | 186 | 86 | 18 | National | Male |
3 | 184 | 75 | 17 | National | Male |
4 | 184 | 78 | 17 | National | Male |
5 | 186 | 83 | 18 | National | Male |
6 | 171 | 71 | 17 | National | Male |
7 | 194 | 85 | 17 | National | Male |
8 | 178 | 67 | 17 | National | Male |
Swimmer | LEFT Arm | Right Arm | Left Arm | Right Arm |
---|---|---|---|---|
Stroke Duration (s) ± SD | Stroke Duration (s) ± SD | Length (m) ± SD | Length (m) ± SD | |
1 | 0.99 ± 0.03 | 1.00 ± 0.04 | 1.25 ± 0.04 | 1.27 ± 0.04 |
2 | 1.00 ± 0.02 | 1.00 ± 0.02 | 1.34 ± 0.04 | 1.38 ± 0.04 |
3 | 0.92 ± 0.03 | 0.89 ± 0.02 | 1.19 ± 0.04 | 1.13 ± 0.03 |
4 | 0.83 ± 0.02 | 0.84 ± 0.02 | 1.25 ± 0.04 | 1.29 ± 0.04 |
5 | 1.21 ± 0.03 | 1.23 ± 0.03 | 1.49 ± 0.04 | 1.49 ± 0.04 |
6 | 0.91 ± 0.03 | 0.89 ± 0.02 | 1.27 ± 0.05 | 1.24 ± 0.05 |
7 | 1.08 ± 0.04 | 1.08 ± 0.02 | 1.42 ± 0.05 | 1.40 ± 0.04 |
8 | 1.07 ± 0.04 | 1.05 ± 0.03 | 1.28 ± 0.04 | 1.24 ± 0.03 |
Swimmer | Slope | Intercept | r2 |
---|---|---|---|
1 | 0.975 | −0.045 | 0.9999 |
2 | 0.950 | 0.870 | 0.9995 |
3 | 0.960 | 0.255 | 0.9998 |
4 | 0.973 | 0.950 | 0.9997 |
5 | 0.967 | 2.600 | 0.9975 |
6 | 0.973 | 0.933 | 0.9992 |
7 | 0.960 | 0.823 | 0.9997 |
8 | 0.970 | 1.055 | 0.9997 |
Mean | 0.966 | 0.930 | 0.9994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamm, A. Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors. Proceedings 2018, 2, 284. https://doi.org/10.3390/proceedings2060284
Stamm A. Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors. Proceedings. 2018; 2(6):284. https://doi.org/10.3390/proceedings2060284
Chicago/Turabian StyleStamm, Andy. 2018. "Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors" Proceedings 2, no. 6: 284. https://doi.org/10.3390/proceedings2060284
APA StyleStamm, A. (2018). Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors. Proceedings, 2(6), 284. https://doi.org/10.3390/proceedings2060284