Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1 †
Abstract
:1. Introduction
2. Essential Characteristics of the Design Optimization Problem
3. Recent Design Optimization Methods
3.1. Deterministic Methods
3.2. Stochastic Methods
4. Conclusions
Conflicts of Interest
References
- Müller, G.; Vogt, K.; Ponick, B. Berechnung Elektrischer Maschinen, 6th ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Papageorgiou, M.; Leibold, M.; Buss, M. Optimierung. Statische, Dynamische, Stochastische Verfahren für die Anwendung, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lobato, F.S.; Steffen, V., Jr. Multi-Objective Optimization Problems. Concepts and Self-Adaptive Parameters with Mathematical and Engineering Applications, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Unger, T.; Dempe, S. Lineare Optimierung. Modell, Lösung, Anwendung, 1st ed.; Vieweg+Teubner: Wiesbaden, Germany, 2010. [Google Scholar]
- Rao, S. Engineering Optimization. Theory and Practice, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bastos, J.P.; Sadowski, N. Electromagnetic Modeling by Finite Element Methods, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gerling, D. Electrical Machines. Mathematical Fundamentals of Machine Topologies, 1st ed.; Springer: Berlin, Germany, 2015. [Google Scholar]
- Wang, L.; Lowther, D.A. Selection of approximation models for electromagnetic device optimization. IEEE Trans. Magn. 2006, 42, 1227–1230. [Google Scholar] [CrossRef]
- Mendes, M.H.S.; Soares, G.L.; Coulomb, J.-L.; Vasconcelos, J.A. Appraisal of Surrogate Modeling Techniques: A Case Study of Electromagnetic Device. IEEE Trans. Magn. 2013, 49, 1993–1996. [Google Scholar] [CrossRef]
- Bartholomew-Biggs, M. Nonlinear Optimization with Engineering Applications, 1st ed.; Springer: Boston, MA, USA, 2008. [Google Scholar]
- Schneider, J.J.; Kirkpatrick, S. Stochastic Optimization, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Duan, Y.; Ionel, D.M. A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. IEEE Trans. Ind. Appl. 2013, 49, 1268–1275. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.; Guo, Y.; Liu, C.; Ma, B. A Review of Design Optimization Methods for Electrical Machines. Energies 2017, 10, 1962. [Google Scholar] [CrossRef]
- Yilmaz, M. Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications. Renew. Sustain. Energy Rev. 2015, 52, 80–99. [Google Scholar] [CrossRef]
- Collette, Y.; Siarry, P. Multiobjective Optimization. Principles and Case Studies, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Snyman, J.A. Practical Mathematical Optimization. An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, 1st ed.; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Yang, X.-S. Introduction to Mathematical Optimization. From Linear Programming to Metaheuristics, 1st ed.; Cambridge International Science Publishing: Cambridge, UK, 2008. [Google Scholar]
- Du, K.-L.; Swamy, M.N.S. Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature, 1st ed.; Birkhäuser: Basel, Switzerland, 2016. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. Particle Swarm Optimization and Intelligence. Advances and Applications, 1st ed.; IGI Global: Hershey, PA, USA, 2010. [Google Scholar]
- Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmelcher, J.; Büning, M.K.; Kreisköther, K.; Gerling, D.; Kampker, A. Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1. Proceedings 2018, 2, 1400. https://doi.org/10.3390/proceedings2221400
Schmelcher J, Büning MK, Kreisköther K, Gerling D, Kampker A. Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1. Proceedings. 2018; 2(22):1400. https://doi.org/10.3390/proceedings2221400
Chicago/Turabian StyleSchmelcher, Johannes, Max Kleine Büning, Kai Kreisköther, Dieter Gerling, and Achim Kampker. 2018. "Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1" Proceedings 2, no. 22: 1400. https://doi.org/10.3390/proceedings2221400
APA StyleSchmelcher, J., Büning, M. K., Kreisköther, K., Gerling, D., & Kampker, A. (2018). Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1. Proceedings, 2(22), 1400. https://doi.org/10.3390/proceedings2221400