2D Supramolecular Structure for a Chiral Heterotrinuclear ZnII2HoIII Complex through Varied HBonds Connecting Solvates and Counterions †
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of [ZnII2HoIII(L)(ald)(HO)(H2O)(MeCN)](NO3)2·EtOH
2.3. Crystal Structure Determination
3. Results and Discussion
3.1. Synthetic Method
3.2. Spatial Arrangement of [ZnII2HoIII(L3)(ald)(HO)(H2O)(MeCN)]2+
3.3. Packing Scheme for [Zn2HoIII(L)(ald)(HO)(H2O)(MeCN)](NO3)2·EtOH
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
References
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide single-molecule magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef]
- Osa, S.; Kido, T.; Matsumoto, V.R.N.; Pochaba, A.; Mrozinski, J. A Tetranuclear 3d–4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 2004, 126, 420–421. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Mn21Dy Cluster with a Record Magnetization Reversal Barrier for a Mixed 3d/4f Single-Molecule Magnet. Inorg. Chem. 2011, 50, 421–423. [Google Scholar] [CrossRef]
- Moreno Pineda, E.; Chilton, N.F.; Tuna, F.; Winpenny, R.E.P.; McInnes, E.J.L. Systematic Study of a Family of Butterfly-Like {M2Ln2} Molecular Magnets (M = MgII, MnIII, CoII, NiII, and CuII; Ln = YIII, GdIII, TbIII, DyIII, HoIII, and ErIII). Inorg. Chem. 2015, 54, 5930–5941. [Google Scholar] [CrossRef]
- Biswas, S.; Bag, P.; Das, S.; Kundu, S.; van Leusen, J.; Kögerler, P.; Chandrasekhar, V. Heterometallic [Cu2Ln3] (Ln = DyIII, GdIII and HoIII) and [Cu4Ln2] (Ln = DyIII and HoIII) Compounds: Synthesis, Structure, and Magnetism. Eur. J. Inorg. Chem. 2017, 1129–1142. [Google Scholar] [CrossRef]
- Costes, J.P.; Titos-Padilla, S.; Oyarzabal, I.; Gupta, T.; Duhayon, C.; Rajaraman, G.; Colacio, E. Effect of ligand substitution around the DyIII on the SMM properties of dual-luminescent Zn–Dy and Zn–Dy–Zncomplexes with large anisotropy energy barriers: A combined theoretical and experimental magnetostructural study. Inorg. Chem. 2016, 55, 4428–4440. [Google Scholar] [CrossRef]
- Yue, S.-T.; Wei, Z.-Q.; Wang, N.; Liu, W.-J.; Zhao, X.; Chang, L.-M.; Liu, Y.-L.; Mo, H.-H.; Cai, Y.-P. Three novel microporous 3D heterometallic 3d–4f coordination polymers: Synthesis, crystal structures and photoluminescence properties. Inorg. Chem. Commun. 2011, 14, 1396–1399. [Google Scholar] [CrossRef]
- Das, S.; Bejoymohandas, K.S.; Dey, A.; Biswas, S.; Reddy, M.L.P.; Morales, R.; Ruiz, E.; Titos-Padilla, S.; Colacio, E.; Chandrasekhar, V. Amending the Anisotropy Barrier and Luminescence Behavior of Heterometallic Trinuclear Linear [MIILnIIIMII] (LnIII = Gd, Tb, Dy; MII = Mg/Zn) Complexes by Change from Divalent Paramagnetic to Diamagnetic Metal Ions. Chem. Eur. J. 2015, 21, 6449–6464. [Google Scholar] [CrossRef]
- Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem. Res. 2016, 49, 2381–2389. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Wang, Y.; Wang, R.-X.; Qiu, J.-Q.; Chi, Y.-X.; Jin, J.; Niu, S.-Y. Syntheses, structures and photophysical properties of a series of Zn-Ln complexes. J. Phys. Chem. Solids 2017, 104, 221–227. [Google Scholar] [CrossRef]
- Fondo, M.; Corredoira-Vázquez, J.; García-Deibe, A.M.; Sanmartín-Matalobos, J.; Herrera, J.M.; Colacio, E. Designing Ligands to Isolate ZnLn and Zn2Ln Complexes: Field-Induced Single-Ion Magnet Behavior of the ZnDy, Zn2Dy, and Zn2Er. Inorg. Chem. 2017, 56, 5646–5656. [Google Scholar] [CrossRef]
- Fondo, M.; Corredoira-Vázquez, J.; Herrera-Lanzós, A.; García-Deibe, A.M.; Sanmartín-Matalobos, J.; Herrera, J.M.; Colacio, E.; Nuñez, C. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: An emissive Zn2Dy single ion magnet. Dalton Trans. 2017, 46, 17000–17009. [Google Scholar] [CrossRef]
- Bag, P.; Chakraborty, A.; Rogez, G.; Chandrasekhar, V. Pentanuclear Heterometallic {MnIII2Ln3} (Ln = Gd, Dy, Tb, Ho) Assemblies in an Open-Book Type Structural Topology: Appearance of Slow Relaxation of Magnetization in the Dy(III) and Ho(III) Analogues. Inorg. Chem. 2014, 53, 6524–6533. [Google Scholar] [CrossRef]
- Vignesh, K.R.; Langley, S.K.; Murray, K.S.; Rajaraman, G. Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln = Dy, Tb, Ho) “Butterfly” Complexes. Inorg. Chem. 2017, 56, 2518–2532. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Area-Detector Absorption Correction; Siemens Industrial Automation, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Fondo, M.; Ocampo, N.; García-Deibe, A.M.; Ruiz, E.; Tercero, J.; Sanmartín, J. Discovering the complex Chemistry of a simple NiII/H3L system: Magnetostructural characterization and DFT calculations of di- and polynuclear nickel(II) compounds. Inorg. Chem. 2009, 48, 9861–9873. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; University of Barcelona: Barcelona, Spain, 2010. [Google Scholar]
- Akine, S.; Taniguchi, T.; Nabeshima, T. Helical Metallohost-Guest Complexes via Site-Selective Transmetalation of Homotrinuclear Complexes. J. Am. Chem. Soc. 2006, 128, 15765–15774. [Google Scholar] [CrossRef]
- Amjad, A.; Madalan, A.M.; Andruh, M.; Caneschi, A.; Sorace, L. Slow relaxation of magnetization in an isostructural series of zinc–lanthanide complexes: An integrated EPR and AC susceptibility study. Chem. Eur. J. 2016, 22, 12849–12858. [Google Scholar] [CrossRef]
- Maeda, M.; Hino, S.; Yamashita, K.; Kataoka, Y.; Nakano, M.; Yamamurac, T.; Kajiwara, T. Correlation between slow magnetic relaxation and the coordination structures of a family of linear trinuclear Zn(II)–Ln(III)–Zn(II) complexes (Ln = Tb, Dy, Ho, Er, Tm and Yb). Dalton Trans. 2012, 41, 13640–13648. [Google Scholar] [CrossRef]
- Wong, W.-K.; Liang, H.; Wong, W.-Y.; Cai, Z.; Lib, K.-F.; Cheah, K.-W. Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes. New J. Chem. 2002, 26, 275–278. [Google Scholar] [CrossRef]
- García-Deibe, A.M.; Fondo, M.; Corredoira-Vázquez, J.; Fallah, M.S.E.; Sanmartín-Matalobos, J. Hierarchical assembly of antiparallel homochiral sheets formed by hydrogen-bonded helixes of a trapped-valence CoII/CoIII complex. Cryst. Growth Des. 2017, 17, 467–473. [Google Scholar] [CrossRef]
Formula | C40H46Br4HoN5O13Zn2·2(NO3)·C2H6O |
M | 1590.21 |
Crystal dimensions (mm) | 0.18 × 0.12 × 0.04 |
Crystal System, Space group | Monoclinic, P21/n |
a, b, c (Å) | 12.930 (1), 17.7500 (12), 17.7500 (12) |
α, β, γ (°) | 90, 101.885(5), 90 |
θ Ranges (°) | 2.0–28.3 |
V (Å3), μ/mm−1 | 5383.1 (7), 5.39 |
Z | 4 |
F(000) | 3120 |
Dx/g·cm−3 | 1.962 |
−h, h/−k, k/−l, l | −17, 17/−23, 23/−31, 31 |
Total, unique and [I > 2σ(I)] reflections | 180,748, 13,340, 10,903 |
No. of reflections, restraints, parameters | 13,340, 0, 692 |
Rint | 0.082 |
Final R, wR | 0.056, 0.119 |
R, wR (all data) | 0.074, 0.126 |
∆ρmax, ∆ρmin (e/Å3) | 2.26, −3.39 |
Zn1—O1H | 2.018(4) | Zn2—O1H | 2.031(4) | Ho1—O8 | 2.315(5) |
Zn1—N1 | 2.055(6) | Zn2—N4 | 2.048(5) | Ho1—O5 | 2.328(4) |
Zn1—O1 | 2.056(4) | Zn2—O5 | 2.054(4) | Ho1—O1H | 2.348(4) |
Zn1—O3 | 2.122(4) | Zn2—O3 | 2.124(4) | Ho1—O1 | 2.371(4) |
Zn1—N1S | 2.203(6) | Zn2—O2W | 2.132(5) | Ho1—O3W | 2.380(4) |
Zn1—N2 | 2.250(5) | Zn2—N3 | 2.201(5) | Ho1—O7 | 2.387(5) |
O1H—Zn1—N1 | 169.0(2) | O1H—Zn2—N4 | 170.68(19) | Ho1—O1W | 2.423(4) |
O3—Zn1—N1S | 168.5(2) | O3—Zn2—O2W | 166.70(18) | Ho1—O6 | 2.660(5) |
O1—Zn1—N2 | 170.48(18) | O5—Zn2—N3 | 169.80(19) | Ho1—O2 | 2.671(5) |
O8—Ho1—O5 | 73.77(18) | O1H—Ho1—O1 | 68.75(15) | O1—Ho1—O3W | 74.89(15) |
O8—Ho1—O1H | 75.42(19) | O8—Ho1—O3W | 77.42(18) | O8—Ho1—O7 | 71.27(19) |
O5—Ho1—O1H | 69.58(15) | O1H—Ho1—O3W | 78.31(15) | O3W—Ho1—O7 | 72.50(16) |
O5—Ho1—O1W | 72.03(15) | O1—Ho1—O1W | 73.56(15) | O8—Ho1—O6 | 79.79(18) |
D—H···A | d(D—H) | d(H···A) | d(D···A) | <(DHA) |
---|---|---|---|---|
O(1H)—H(1H)···O(22) | 0.87 | 1.90 | 2.769(6) | 177.6 |
O(1W)—H(1W1)···O(3) | 0.80 | 2.35 | 3.069(6) | 149.9 |
O(1W)—H(1W1)···O(4) | 0.80 | 2.20 | 2.848(6) | 137.7 |
O(1W)—H(1W2)···O(10) | 0.83 | 2.09 | 2.888(8) | 161.3 |
O(2W)—H(2W1)···O(9) | 0.74 | 2.16 | 2.877(7) | 164.2 |
O(2W)—H(2W2)···O(10) #1 | 0.84 | 2.00 | 2.816(8) | 162.9 |
O(3W)—H(3W1)···O(1S) | 0.73 | 1.98 | 2.694(7) | 164.1 |
O(3W)—H(3W2)···O(21) | 0.78 | 2.05 | 2.807(7) | 164.7 |
O(1S)—H(1S)···O(23) #2 | 0.84 | 1.96 | 2.778(8) | 163.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corredoira-Vázquez, J.; Fondo, M.; Sanmartín-Matalobos, J.; García-Deibe, A.M. 2D Supramolecular Structure for a Chiral Heterotrinuclear ZnII2HoIII Complex through Varied HBonds Connecting Solvates and Counterions. Proceedings 2018, 2, 1114. https://doi.org/10.3390/IECC_2018-05247
Corredoira-Vázquez J, Fondo M, Sanmartín-Matalobos J, García-Deibe AM. 2D Supramolecular Structure for a Chiral Heterotrinuclear ZnII2HoIII Complex through Varied HBonds Connecting Solvates and Counterions. Proceedings. 2018; 2(14):1114. https://doi.org/10.3390/IECC_2018-05247
Chicago/Turabian StyleCorredoira-Vázquez, Julio, Matilde Fondo, Jesús Sanmartín-Matalobos, and Ana M. García-Deibe. 2018. "2D Supramolecular Structure for a Chiral Heterotrinuclear ZnII2HoIII Complex through Varied HBonds Connecting Solvates and Counterions" Proceedings 2, no. 14: 1114. https://doi.org/10.3390/IECC_2018-05247
APA StyleCorredoira-Vázquez, J., Fondo, M., Sanmartín-Matalobos, J., & García-Deibe, A. M. (2018). 2D Supramolecular Structure for a Chiral Heterotrinuclear ZnII2HoIII Complex through Varied HBonds Connecting Solvates and Counterions. Proceedings, 2(14), 1114. https://doi.org/10.3390/IECC_2018-05247