Soot Particle Classifications in the Context of a Resistive Sensor Study †
Abstract
:1. Introduction
2. Materiel and Methods
2.1. Experimental Set-Up Overview
2.2. Resistive Soot Sensor
2.3. Size Distribution Function
2.4. Electric Classification by a DMA (Differential Mobility Analyzer 3775, TSI)
2.5. Aerodynamic Classification by an AAC (Cambustion)
3. Results and Discussion
3.1. Response to an Electrostatically Classified Soot Aerosol
3.2. Response to an Aerodynamically Classified Soot Aerosol
4. Conclusions
Acknowledgments
References
- Sassi, A.; Rohart, R.; Belot, G. Post-traitement des émissions polluantes des moteurs thermiques à combustion interne. In Moteur à Allumage par Compression; Techniques de l’ingénieur: Paris, France, 2011; Volume 2, pp. 1–24. [Google Scholar]
- Brunel, O.; Duault, F.; Lavy, J.; Creff, Y.; Youssef, B. Smart soot sensor for particulate filter OBD. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2013, 6, 307–327. [Google Scholar] [CrossRef]
- Grondin, D.; Westermann, A.; Breuil, P.; Viricelle, J.-P. Influence of key parameters on the response of a resistive soot sensor. Sens. Actuators B Chem. 2016, 236, 1036–1043. [Google Scholar] [CrossRef]
- Ochs, T.; Schittenhelm, H.; Genssle, A.; Kamp, B. Particulate matter sensor for on-board diagnostic (OBD) of Diesel particulate filters (DPF). SAE Int. J. Fuels Lubr. 2010, 3, 61–69. [Google Scholar] [CrossRef]
- Husted, H.; Roth, G.; Nelson, S.; Hocken, L.; Fulks, G.; Racine, D. Sensing of particulate matter for on-board diagnosis of particulate filters. SAE Int. J. Engines 2010, 5, 235–247. [Google Scholar] [CrossRef]
- Feulner, M.; Hagen, G.; Muller, A.; Schott, A.; Zollner, C.; Bruggemann, D.; Moos, R. Conductometric sensor for soot mass flow detection in exhausts of internal combustion engines. Sensor 2015, 15, 28796–28806. [Google Scholar] [CrossRef]
- Malik, A.; Abdulhamid, H.; Pagels, J.; Rissler, J.; Lindskog, M.; Nilsson, P.; Bjorklund, R.; Jozsa, P.; Visser, J.; Spetz, A.; et al. A potential soot mass determination method from resistivity measurement of thermophoretically deposited soot. Aerosol Sci. Technol. 2011, 45, 284–294. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jiminez, L.J. Particle morphology and density characterization by combined mobility diameter measurements. Part 1. Aerosol Sci. Technol. 2004, 38, 1185–1205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynaud, A.; Leblanc, M.; Zinola, S.; Breuil, P.; Viricelle, J.-P. Soot Particle Classifications in the Context of a Resistive Sensor Study. Proceedings 2018, 2, 987. https://doi.org/10.3390/proceedings2130987
Reynaud A, Leblanc M, Zinola S, Breuil P, Viricelle J-P. Soot Particle Classifications in the Context of a Resistive Sensor Study. Proceedings. 2018; 2(13):987. https://doi.org/10.3390/proceedings2130987
Chicago/Turabian StyleReynaud, Adrien, Mickael Leblanc, Stéphane Zinola, Philippe Breuil, and Jean-Paul Viricelle. 2018. "Soot Particle Classifications in the Context of a Resistive Sensor Study" Proceedings 2, no. 13: 987. https://doi.org/10.3390/proceedings2130987
APA StyleReynaud, A., Leblanc, M., Zinola, S., Breuil, P., & Viricelle, J. -P. (2018). Soot Particle Classifications in the Context of a Resistive Sensor Study. Proceedings, 2(13), 987. https://doi.org/10.3390/proceedings2130987