SU-8 Based Waveguide for Optrodes †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Myllymaa, S.; Myllymaa, K.; Lappalainen, R. Flexible implantable thin film neural electrodes. In Recent Advances in Biomedical Engineering; Naik, G.R., Ed.; InTech: Vienna, Austria, 2009; pp. 165–190. [Google Scholar]
- Goncalves, S.B.; Ribeiro, J.F.; Silva, A.F.; Costa, R.M.; Correia, J.H. Design and manufacturing challenges of optogenetic neural interfaces: A review. J. Neural Eng. 2017, 14, 041001. [Google Scholar] [CrossRef] [PubMed]
- Gagnon-Turcotte, G.; Kisomi, A.A.; Ameli, R.; Camaro, C.O.; LeChasseur, Y.; Néron, J.L.; Bareil, P.B.; Fortier, P.; Bories, C.; de Koninck, Y.; et al. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability. Sensors 2015, 15, 22776–22797. [Google Scholar] [CrossRef] [PubMed]
- Scharf, R.; Tsunematsu, T.; McAlinden, N.; Dawson, M.D.; Sakata, S.; Mathieson, K. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci. Rep. 2016, 6, 28381. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Stark, E.; Im, M.; Cho, I.J.; Yoon, E.S.; Buzsáki, G.; Wise, K.D.; Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 2013, 10, 056012. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.-J.; Baac, H.W.; Yoon, E. A 16-site neural probe integrated with a waveguide for optical stimulation. In Proceedings of the IEEE 23rd International Conference on MEMS, Hong Kong, China, 24–28 January 2010; pp. 995–998. [Google Scholar] [CrossRef]
Object Type | X Position | Y Position | Z Position | Material | X1/X2 Half Width | Y1/Y2 Half Width | Z Length |
---|---|---|---|---|---|---|---|
Rectangular volume | 0 | 0 | 0.1 | Al | 0.0465 | 0.0005 | 8.0015 |
Rectangular volume | 0 | 0.00305 | 0.1 | PMMA | 0.046 | 0.00255 | 8.001 |
Rectangular volume | 0 | 0.00810 | 0.1 | SU-8 | 0.045 | 0.0025 | 8 |
Rectangular volume | 0 | 0.01315 | 0.1 | PMMA | 0.045 | 0.00255 | 6.935 |
Rectangular volume | 0 | 0.01315 | 7.06 | PMMA | 0.045 | 0.00255 | 0.475 |
Rectangular Volume | 0 | 0.01315 | 7.56 | PMMA | 0.045 | 0.00255 | 0.475 |
Rectangular Volume | 0 | 0.01315 | 8.06 | PMMA | 0.045 | 0.00255 | 0.04 |
Rectangular Volume | −0.02875 | 0.01315 | 7.035 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | 0.02875 | 0.01315 | 7.035 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | −0.02875 | 0.01315 | 7.535 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | 0.02875 | 0.01315 | 7.535 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | −0.02875 | 0.01315 | 8.035 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | 0.02875 | 0.01315 | 8.035 | PMMA | 0.01625 | 0.00255 | 0.025 |
Rectangular volume | 0 | 0.01065 | 8.1 | PMMA | 0.046 | 0.00505 | 0.001 |
Rectangular volume | −0.0455 | 0.01065 | 0.1 | PMMA | 0.0005 | 0.00505 | 8 |
Rectangular volume | 0.0455 | 0.01065 | 0.1 | PMMA | 0.0005 | 0.00505 | 8 |
Rectangular volume | 0 | 0.0086 | 8.101 | Al | 0.0465 | 0.00810 | 0.0005 |
Object Type | X Position | Y Position | Z Position | Layout Rays | Analysis Rays | Power (W) | Cone Angle (°) |
---|---|---|---|---|---|---|---|
Source point | 0 | 0.00810 | 0.1 | 1000 | 100,000 | 1.6 | 20 |
Object Type | X Position | Y Position | Z Position | Tilt about X (°) | Material | X Half Width | Y Half Width | X Pixels | Y Pixels |
---|---|---|---|---|---|---|---|---|---|
Detector Rect | 0 | 0.016 | 7.0475 | 90 | Absorb | 0.013 | 0.013 | 100 | 100 |
Detector Rect | 0 | 0.016 | 7.5475 | 90 | Absorb | 0.013 | 0.013 | 100 | 100 |
Detector Rect | 0 | 0.016 | 8.0475 | 90 | Absorb | 0.013 | 0.013 | 100 | 100 |
Detector | Z Position (mm) | Mean Total Power (W) | Mean Peak Irradiance (W/mm2) |
---|---|---|---|
1 | 7.0475 | 3.27 × 10−3 | 3.85 × 102 |
2 | 7.5475 | 2.95 × 10−3 | 3.19 × 102 |
3 | 8.0475 | 2.65 × 10−3 | 3.02 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, S.; Ribeiro, J.F.; Goncalves, S.B.; Maciel, M.J.; Dias, R.A.; Gaspar, J.; Wolffenbuttel, R.F.; Correia, J.H. SU-8 Based Waveguide for Optrodes. Proceedings 2018, 2, 814. https://doi.org/10.3390/proceedings2130814
Pimenta S, Ribeiro JF, Goncalves SB, Maciel MJ, Dias RA, Gaspar J, Wolffenbuttel RF, Correia JH. SU-8 Based Waveguide for Optrodes. Proceedings. 2018; 2(13):814. https://doi.org/10.3390/proceedings2130814
Chicago/Turabian StylePimenta, Sara, João F. Ribeiro, Sandra B. Goncalves, Marino J. Maciel, Rosana A. Dias, João Gaspar, Reinoud F. Wolffenbuttel, and José H. Correia. 2018. "SU-8 Based Waveguide for Optrodes" Proceedings 2, no. 13: 814. https://doi.org/10.3390/proceedings2130814
APA StylePimenta, S., Ribeiro, J. F., Goncalves, S. B., Maciel, M. J., Dias, R. A., Gaspar, J., Wolffenbuttel, R. F., & Correia, J. H. (2018). SU-8 Based Waveguide for Optrodes. Proceedings, 2(13), 814. https://doi.org/10.3390/proceedings2130814