Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Procedure
2.1.1. Evaporation Deposition Method
2.1.2. Co-Electroplating Deposition Method
2.1.3. Hydrogel Coating
3. Results and Discussion
4. Conclusions
References
- Salvo, P.; Calisi, N.; Melai, B.; Cortigiani, B.; Mannini, M.; Caneschi, A.; Lorenzetti, G.; Paoletti, C.; Lomonaco, T.; Paolicchi, A.; et al. Temperature and pH sensors based on graphenic materials. Biosens. Bioelectron. 2017, 91, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Yoo, W.J.; Seo, J.K.; Shin, S.H.; Han, Ki.; Kim, S.G.; Park, J.Y.; Lee, B. Fibre-optic pH sensor based on sol-gel film immobilized with neutral red. Opt. Rev. 2013, 20, 209–213. [Google Scholar] [CrossRef]
- Aldaba, A.L.; González-Vila, Á.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D. Polyaniline-coated tilted fibre Bragg gratings for pH sensing. Sens. Actuators 2018, 254, 1087–1093. [Google Scholar] [CrossRef]
- Gu, B.; Yin, M.; Zhang, A.P.; Qian, J.; He, S. Biocompatible fibre-optic pH sensor based on optical fibre modal interferometer self- assembled with sodium alginate/polyethylenimine coating. IEEE Sens. 2012, 12, 1477–1482. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, M.; Liu, S.X.; Zhang, Q. Smart hydrogel-based optical fibre SPR sensor for pH measurements. Sens. Actuators B Chem. 2018, 261, 226–232. [Google Scholar] [CrossRef]
- Shivananju, B.; Priydarshi, M.K.; Mahapatra, D.R.; Hegde, G.M.; Asokan, S. pH Sensing by Single and Multi-Layer Hydrogel Coated Fibre Bragg Grating. In Proceedings of the 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1), Pune, India, 7–10 March 2012. [Google Scholar]
- Mooney, D.J.; Yong, Lee, K. Y. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Gong, J.P. Friction and lubrication of hydrogels—Its richness and complexity. Soft Matter 2006, 2, 7544–7552. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, J.; Vlassak, J.J.; Suo, Z. Adhesion between highly stretchable materials. Soft Matter 2016, 12, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Zhang, T.; Lin, S.; Alberto Parada, G.; Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2015, 15, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Zhang, T.; Lin, S.; Alberto Parada, G.; Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Prevoteau, A.; Paul, E.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticles solutions as adhesives for gels and biological tissues. Nature 2014, 505, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Gao, W. Synthesis, Structure, and Characterizations. In Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications; Springer: Cham, Germany, 2015; pp. 1–28. [Google Scholar]
- Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Mahmood, H.; Tripathi, M. Enhancement of interfacial adhesion in glass fibre/epoxy composites by electrophoretic deposition of graphene oxide on glass fibres. Compos. Sci. Technol. 2016, 126, 149–157. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binetti, L.; Stankiewicz, A.; Alwis, L.S.M. Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications. Proceedings 2018, 2, 789. https://doi.org/10.3390/proceedings2130789
Binetti L, Stankiewicz A, Alwis LSM. Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications. Proceedings. 2018; 2(13):789. https://doi.org/10.3390/proceedings2130789
Chicago/Turabian StyleBinetti, Leonardo, Alicja Stankiewicz, and Lourdes S. M. Alwis. 2018. "Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications" Proceedings 2, no. 13: 789. https://doi.org/10.3390/proceedings2130789
APA StyleBinetti, L., Stankiewicz, A., & Alwis, L. S. M. (2018). Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications. Proceedings, 2(13), 789. https://doi.org/10.3390/proceedings2130789