Highly Integrated and Mobile Sensor System for Dissolved Organic Matter in Stream Ecosystems †
Abstract
:1. Introduction
2. Sensor for Dissolved Organic Matter
Acknowledgments
Conflicts of Interest
References
- Eder, A.; Blöschl, G.; Feichtinger, F. Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: Results from lysimeter studies. Nutr. Cycl. Agroecosyst. 2015, 101, 351–364. [Google Scholar] [CrossRef]
- Fasching, Ch.; Battin, T.J. Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater. Aquat. Sci. 2011, 74, 143–153. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2009, 2, 37–41. [Google Scholar] [CrossRef]
- Graeber, D.; Gelbert, J.; Pusch, M.T. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci. Total Environ. 2012, 438, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Inverarity, R.; Charlton, M. Detecting river pollution using fluorescence spectrophotometry: Case studies from the Ouseburn, NE England. Environ. Pollut. 2003, 124, 57–70. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste, and polluted waters-a review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Cobble, P.G.; Lead, J.; Baker, A. Aquatic Organic Matter Fluorescence; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Brandl, M.; Kellner, K.; Posnicek, T.; Bado, I.; Falkenhagen, D. Spectroscopic Hemoglobin and Bilirubin Measurement on Optically Opaque Particulate Fluids. Sens. Actuators B Chem. 2013, 182, 711–717. [Google Scholar] [CrossRef]
- Blöschl, G.; Blaschke, A.P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; et al. The Hydrological Open Air laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory. Hydrol. Earth Syst. Sci. 2016, 20, 227–255. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posnicek, T.; Weigelhofer, G.; Eder, A.; Brandl, M. Highly Integrated and Mobile Sensor System for Dissolved Organic Matter in Stream Ecosystems. Proceedings 2018, 2, 1507. https://doi.org/10.3390/proceedings2131507
Posnicek T, Weigelhofer G, Eder A, Brandl M. Highly Integrated and Mobile Sensor System for Dissolved Organic Matter in Stream Ecosystems. Proceedings. 2018; 2(13):1507. https://doi.org/10.3390/proceedings2131507
Chicago/Turabian StylePosnicek, Thomas, Gabriele Weigelhofer, Alexander Eder, and Martin Brandl. 2018. "Highly Integrated and Mobile Sensor System for Dissolved Organic Matter in Stream Ecosystems" Proceedings 2, no. 13: 1507. https://doi.org/10.3390/proceedings2131507
APA StylePosnicek, T., Weigelhofer, G., Eder, A., & Brandl, M. (2018). Highly Integrated and Mobile Sensor System for Dissolved Organic Matter in Stream Ecosystems. Proceedings, 2(13), 1507. https://doi.org/10.3390/proceedings2131507