Improvement of Drainage Density Parameter Estimation within Erosion Potential Method †
Abstract
:1. Introduction
2. Materials and Methods
- L—Length of the waterway (km),
- n—Number of waterways,
- F—Contributing drainage area (km2).
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Glennon, A.; Groves, C. An examination of perennial stream drainage patterns within the Mammoth cave watershed, Kentucky. J. Cave Karst Stud. 2002, 64, 82–91. [Google Scholar]
- Gallagher, A.S. Drainage basins. In Aquatic Habitat Assessment—Common Methods; Bain, M.B., Stevenson, N.J., Eds.; American Fisheries Society: Bethesda, MD, USA, 1999; pp. 25–34. ISBN 1-888569-18-2. [Google Scholar]
- Marani, M.; Belluco, E.; D’Alpaos, A.; Delfina, A.; Lanzoni, S. On the drainage density of tidal networks. Water Resour. Res. 2003, 39, 1–11. [Google Scholar] [CrossRef]
- Abrahams, A.D. Channel Networks: A Geomorphologial Perspective. Water Resour. Res. 1984, 20, 161–168. [Google Scholar] [CrossRef]
- Tucker, G.E.; Catani, F.; Rinaldo, A.; Bras, R.L. Statistical analysis of drainage density form digital terrain data. Geomorphology 2001, 36, 187–202. [Google Scholar] [CrossRef]
- Dobos, E.; Daroussin, J. The derivation of the potential drainage density index (PDD). In An SRTM-Based Procedure to Delineate SOTER Terrain Units on 1:1 and 1.5 Million Scales; EUR 21571 EN; Office of Official Publications of the European Communities: Luxemburg, 2005; pp. 40–51. [Google Scholar]
- Collins, D.B.G.; Bras, R.L. Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands. Water Resour. Res. 2010, 46, 1–18. [Google Scholar] [CrossRef]
- Gregory, K.J.; Walling, D.E. The variation of drainage density within a catchment. Hydrol. Sci. J. 1968, 13, 61–68. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Source areas, drainage density, and channel initiation. Water Resour. Res. 1989, 25, 1907–1918. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Channel Initiation and the problem of landscape scale. Science 1992, 255, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, W.E.; Wilson, C.J.; Montgomery, D.R.; McKean, J. Analysis of erosion thresholds, channel networks and landscape morphology using a Digital Terrain Model. J. Geol. 1993, 101, 259–278. [Google Scholar] [CrossRef]
- Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef]
- Luoto, M. New insights into factors controlling drainage density in subartic landscapes. Artic Antarct. Alp. Res. 2007, 39, 117–126. [Google Scholar] [CrossRef]
- Hadley, R.F.; Schumm, S.A. Hydrology of the Upper Chayenne River Basin. Sediment sources and drainage basin characteristics in Upper Cheyenne River Basin (part B). In U.S. Geological Survey Water Supply Paper 1531; United States Government Printing Office: Washington, DC, USA, 1961; pp. 137–196. [Google Scholar]
- Tucker, G.E.; Bras, R.L. Hillslope processes, drainage density and landscape morphology. Water Resour. Res. 1998, 34, 2751–2764. [Google Scholar] [CrossRef]
- Horward, A.D. Badland morphology and evolution: Interpretation using a simulation model. Earth Surf. Process. Landf. 1997, 22, 211–227. [Google Scholar] [CrossRef]
- Lin, Z.; Oguchi, T. Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs. Geomorphology 2004, 63, 159–173. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparison of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Primorje-Gorski Kotar County. Spatial Plan of Area of Significance of Vinodol County; County Official Gazette of Primorje-Gorski Kotar County: Rijeka, Croatia, 2004; Volume 30. [Google Scholar]
- Ravi Shankar, M.N.; Mohan, G. Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Environ. Geol. 2006, 46, 990–998. [Google Scholar] [CrossRef]
- Dragičević, N.; Karleuša, B.; Ožanić, N. Erosion Potential Method (Gavrilović Method) Sensitivity Analysis. Soil Water Res. 2017, 12, 51–59. [Google Scholar] [CrossRef]
- Dragičević, N.; Karleuša, B.; Ožanić, N. A review of the Gavriović method (erosion potential method) application. Građevinar 2016, 68, 715–725. [Google Scholar] [CrossRef]
Tributary | Area (km2) | River Length (km) |
---|---|---|
Duboki | 0.67 | 0.96 |
Bronac | 0.99 | 1.62 |
Cigančica | 1.49 | 3.03 |
Leskovnik | 1.62 | 0.87 |
Susik | 1.93 | 0.78 |
Ricina Tribaljska | 2.74 | 1.71 |
Pećica | 2.23 | 2.32 |
Kučina | 0.82 | 1.04 |
Slani Potok | 2.21 | 3.22 |
Mala Dubracina | 2.09 | 3.00 |
Kucina | 3.29 | 1.52 |
Malenica | 5.54 | 4.00 |
Dubracina River | 13.69 | |
Small unnamed tributaries | 3.23 | |
Summarized | 43.56 | 40.99 |
Category | Very Low | Low | Medium | High |
---|---|---|---|---|
(km/km2) | <1.0 | 1.0–2.0 | 2.0–3.5 | >3.5 |
(3) | Wa—Total annual volume of detached soil (m3/year) T—Temperature coefficient (-) Pa—Average annual precipitation (mm) Z—Erosion coefficient (-) F—Study area (km2) T0—Average annual temperature (°C) Y—Soil erodibility coefficient (-) Xa—Soil protection coefficient (-) —Coefficient of type and extent of erosion (-) Ja—Average slope of the study area (%) ξ—Sediment delivery ratio (-) O—Perimeter of the study area (km) z—Mean difference in elevation of the study area (km) Dd—Drainage density (km/km2) lp—Length of the principal waterway (km) Gy—Actual sediment yield (m3/year) | |
(4) | ||
(5) | ||
(6) | ||
(7) |
Sub-Catchment | Sediment Delivery Ratio ξ |
---|---|
Sušik | 0.0853 |
Kučina | 0.1126 |
Leskovnik | 0.1112 |
Ričina Tribaljska | 0.1379 |
Malenica | 0.1649 |
Pećica | 0.2204 |
Kostelj | 0.1903 |
Mala Dubračina | 0.2886 |
Duboki | 0.1909 |
Slani potok | 0.2665 |
Bronac | 0.2407 |
Cigančica | 0.3291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragičević, N.; Karleuša, B.; Ožanić, N. Improvement of Drainage Density Parameter Estimation within Erosion Potential Method. Proceedings 2018, 2, 620. https://doi.org/10.3390/proceedings2110620
Dragičević N, Karleuša B, Ožanić N. Improvement of Drainage Density Parameter Estimation within Erosion Potential Method. Proceedings. 2018; 2(11):620. https://doi.org/10.3390/proceedings2110620
Chicago/Turabian StyleDragičević, Nevena, Barbara Karleuša, and Nevenka Ožanić. 2018. "Improvement of Drainage Density Parameter Estimation within Erosion Potential Method" Proceedings 2, no. 11: 620. https://doi.org/10.3390/proceedings2110620
APA StyleDragičević, N., Karleuša, B., & Ožanić, N. (2018). Improvement of Drainage Density Parameter Estimation within Erosion Potential Method. Proceedings, 2(11), 620. https://doi.org/10.3390/proceedings2110620