Pyrolysis of Sewage Sludge: Unlocking the Hidden Potential for Valorization and Carbon Sequestration †
Abstract
1. Introduction
2. Materials and Methods
- Pyrolysis performance estimation—bibliographic yields were coupled with the sludge compositions to estimate possible ranges of biochar production and carbon retention.
- Energy pre-treatment assessment—energy consumption for drying was calculated per kg of wet sludge, allowing comparison with the energy content of the dried material.
- Life cycle perspective—a simplified LCA approach was implemented in openLCA using the freely available ELCD database for background processes, comparing two scenarios: (i) current practice of sludge transportation and landfilling and (ii) local pyrolysis with valorisation of the produced biochar. The assessment emphasized avoided transport emissions and potential carbon sequestration in soils.
3. Results and Discussion
3.1. Drying Efficiency and Energy Demand
3.2. Physicochemical Characterization: From Sludge to Biochar
3.3. Estimated Mass Reduction and Biochar Potential
3.4. Simplified Life Cycle Assessment (LCA) Comparison
4. Conclusions, Limitations, and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, M.T.; Ferreira, A.O.; Barreiros, A.M. Municipal Sewage Sludge—A Problem That Must Be Solved. In Proceedings of the 3rd Conference on Sustainable Solid Waste Management, Athens, Greece, 2–4 July 2015. [Google Scholar]
- Gianico, A.; Braguglia, C.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives. Water 2021, 13, 103. [Google Scholar] [CrossRef]
- Borges, A.D.S.; Oliveira, M.; Teixeira, B.M.M.; Branco, F. Co-Valorisation Energy Potential of Wastewater Treatment Sludge and Agroforestry Waste. Environments 2024, 11, 14. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of Pyrolysis Temperature on Production and Nutrient Properties of Wastewater Sludge Biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, Z.-F.; Pan, X.-W.; Tan, J.-Y.; Yang, S.-S.; Wu, J.-T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage Sludge Derived Biochar for Environmental Improvement: Advances, Challenges, and Solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jiang, Y.; Tan, X.; Li, L.; Cao, S.; Dou, J.; Chen, R.; Hu, X.; Qiu, Z.; Li, M.; et al. Sludge-Based Biochar Preparation: Pyrolysis and Co-Pyrolysis Methods, Improvements, and Environmental Applications. Fuel 2024, 373, 132265. [Google Scholar] [CrossRef]
- Nair, R.R.; Kißling, P.A.; Marchanka, A.; Lecinski, J.; Turcios, A.E.; Shamsuyeva, M.; Rajendiran, N.; Ganesan, S.; Srinivasan, S.V.; Papenbrock, J.; et al. Biochar Synthesis from Mineral and Ash-Rich Waste Biomass, Part 2: Characterization of Biochar and Co-Pyrolysis Mechanism for Carbon Sequestration. Sustain. Environ. Res. 2023, 33, 14. [Google Scholar] [CrossRef]
- Samolada, M.C.; Zabaniotou, A.A. Comparative Assessment of Municipal Sewage Sludge Incineration, Gasification and Pyrolysis for a Sustainable Sludge-to-Energy Management in Greece. Waste Manag. 2014, 34, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage Sludge Pyrolysis for Liquid Production: A Review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Domini, M.; Abbà, A.; Bertanza, G. Analysis of the Variation of Costs for Sewage Sludge Transport, Recovery and Disposal in Northern Italy: A Recent Survey (2015–2021). Water Sci. Technol. 2022, 85, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Green, D.W.; Southard, M.Z. (Eds.) Perry’s Chemical Engineers’ Handbook, 9th ed.; McGraw Hill Education: New York, NY, USA, 2019; ISBN 978-0-07-183408-7. [Google Scholar]
- Hu, D.; Jiang, P.; Chen, Y.; Gao, F.; Liu, S. Sustainable Sludge Management in China: Quantifying GHG Emissions and Exploring Its Reduction Strategies. Processes 2024, 12, 1481. [Google Scholar] [CrossRef]
- Werner, C.; Lucht, W.; Kammann, C.; Braun, J. Land-Neutral Negative Emissions through Biochar-Based Fertilization—Assessing Global Potentials under Varied Management and Pyrolysis Conditions. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 34. [Google Scholar] [CrossRef]
- Dumortier, J.; Dokoohaki, H.; Elobeid, A.; Hayes, D.J.; Laird, D.; Miguez, F.E. Global Land-Use and Carbon Emission Implications from Biochar Application to Cropland in the United States. J. Clean. Prod. 2020, 258, 120684. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.; Valente, V.; Borges, A. Pyrolysis of Sewage Sludge: Unlocking the Hidden Potential for Valorization and Carbon Sequestration. Proceedings 2025, 133, 2. https://doi.org/10.3390/proceedings2025133002
Oliveira M, Valente V, Borges A. Pyrolysis of Sewage Sludge: Unlocking the Hidden Potential for Valorization and Carbon Sequestration. Proceedings. 2025; 133(1):2. https://doi.org/10.3390/proceedings2025133002
Chicago/Turabian StyleOliveira, Miguel, Vitor Valente, and Amadeu Borges. 2025. "Pyrolysis of Sewage Sludge: Unlocking the Hidden Potential for Valorization and Carbon Sequestration" Proceedings 133, no. 1: 2. https://doi.org/10.3390/proceedings2025133002
APA StyleOliveira, M., Valente, V., & Borges, A. (2025). Pyrolysis of Sewage Sludge: Unlocking the Hidden Potential for Valorization and Carbon Sequestration. Proceedings, 133(1), 2. https://doi.org/10.3390/proceedings2025133002

