Searches for Magnetic Monopoles: A Review †
Abstract
:1. Theoretical Motivation
- Dirac monopole In Dirac’s formulation [1,20], magnetic monopoles are assumed to be point-like particles with quantum mechanical conditions leading to Equation (1), establishing the discrete nature of their magnetic charge. In spite of monopoles formally symmetrising the Maxwell’s equations, a numerical asymmetry emerges in the DQC: the minimum value of the magnetic charge is much larger than the smallest electric charge. Indeed, a magnetic monopole with a single Dirac charge has an equivalent electric charge of . Hence, for a relativistic monopole, the energy loss is around times that of a minimum-ionising particle.
- Monopoles in GUTs Since the Grand Unified Theory (GUT) of strong and electroweak interactions predicted the existence of magnetic monopoles [21,22], searches for magnetic monopoles, in particular of cosmic origin, have been intensified substantially. In 1974, ’t Hooft [2] and Polyakov [3] showed that a unified gauge theory where electromagnetism is embedded in a semi-simple gauge group, such as , would necessitate the existence of the monopole as a soliton with spontaneous symmetry breaking. GUT monopoles are too massive to be produced at any future accelerator, having a mass of [23].
- Electroweak monopole Cho and Maison postulated the electroweak monopole [17,18,24,25] as a generalisation of the Dirac monopole, representing a hybrid of Dirac and ’t Hooft–Polyakov monopoles that carries magnetic charge twice that of the Dirac monopole. The latter is due to the quotient group , where , which is the (unbroken) group of electromagnetism instead of, e.g., the group in the Georgi–Glashow model. Recent estimates of the electroweak monopole mass [26] indicate that it is possibly accessible at the LHC.
- Global monopoles They have been proposed [27] as space-time (cosmological) defects allowing for the spontaneous breaking of internal global symmetries in non-gauged Georgi–Glashow models. These monopoles carry no magnetic charge, yet gravitational effects away from their centre are significant, leading to a deficit angle in the (non-Minkowski) space-time. Such an effect may modify the forward scattering amplitude of Standard Model (SM) background particles, creating ring-like angular regions with very large scattering amplitude [28,29]. Such peculiar scattering patterns of ordinary SM particles may indicate indirectly the presence of a neutral global monopole in collider detectors, where they may be pair-produced [27,30]. Moreover, a variant of the global monopole model, including axion fields and a real electromagnetic field, coupling only gravitationally to the scalar symmetry breaking sector, has been proposed [31,32,33], resulting in axions capable of inducing electromagnetic monopole solutions with a real magnetic charge.
- Monopolium The lack of experimental confirmation of monopoles in Dirac’s proposal [1,20,34] may be attributed to monopoles not being seen freely because they form a bound state called monopolium [35,36,37,38], confined by strong magnetic forces. Monopolium is a neutral state, hence it is difficult to detect directly at a collider detector; however, its decay into photons would give a rather clear signal in the ATLAS, CMS and CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detectors [39,40,41,42,43].
2. Searches for Cosmic Monopoles
3. Searches in Collider Experiments
3.1. Past Searches
3.2. Searches for Monopoles in ATLAS
3.3. MoEDAL Experiment
- Nuclear track detectors The main sub-detector system is made of a large array of CR-39, Makrofol® and LexanTM NTD stacks surrounding the intersection area. The passage of an HI particle through the plastic detector is marked by an invisible damage zone along the trajectory. The damage zone is revealed as a cone-shaped etch-pit when the plastic detector is chemically etched. Then, the sheets of plastics are scanned looking for aligned etch pits in multiple sheets. The MoEDAL NTDs have a (low) threshold of , where z is the charge and the velocity of the incident particle. Another type of NTD installed is the Very High Charge Catcher (), consisting of two flexible low-mass stacks of Makrofol®. It is the only NTD (partly) covering the forward region, being deployed in the LHCb acceptance between RICH1 and the Trigger Tracker.
- Magnetic trappers A unique feature of the MoEDAL detector is the use of paramagnetic magnetic monopole trappers (MMTs) to capture magnetically-charged HI particles. The aluminium absorbers of MMTs are subject to an analysis looking for magnetically charged particles at a remote SQUID magnetometer facility [100].
- TimePix radiation monitors The only non-passive MoEDAL sub-detector is an array of TimePix pixel devices distributed throughout the MoEDAL cavern, forming a real-time radiation monitoring system of beam-related backgrounds. The operation in time-over-threshold mode helps differentiating between various particles species from mixed radiation fields and measuring their energy deposition.
4. Conclusions and Outlook
Funding
Conflicts of Interest
Abbreviations
AMANDA | Antarctic Muon And Neutrino Detector Array |
ANITA | Antarctic Impulse Transient Antenna |
ANTARES | Astronomy with a Neutrino Telescope and Abyss environmental RESearch |
ATLAS | A Toroidal LHC ApparatuS |
CDF | Collider Detector at Fermilab |
CL | Confidence Level |
CT-PPS | CMS-TOTEM Precision Proton Spectrometer |
DQC | Dirac Quantisation Condition |
DY | Drell–Yan |
GUT | Grand Unified Theory |
HI | Highly Ionising |
KGF | Kolar Gold Fields |
LEP | Large Electron-Positron Collider |
LHC | Large Hadron Collider |
MACRO | Monopole, Astrophysics and Cosmic Ray Observatory |
MMT | Magnetic Monopole Trapper |
MODAL | MOnopole Detector At LEP |
MoEDAL | Monopole and Exotics Detector At the LHC |
NTD | Nuclear Track Detector |
PINGU | Precision IceCube Next, Generation Upgrade |
RICE | Radio Ice Cherenkov Experiment |
SLIM | Search for LIght magnetic Monopoles |
SM | Standard Model |
SQUID | Superconducting QUantum Interference Device |
TRT | Transition Radiation Tracker |
VHCC | Very High Charge Catcher |
References
- Dirac, P.A.M. Quantized Singularities in the Electromagnetic Field. Proc. R. Soc. Lond. A 1931, 133, 60–72. [Google Scholar] [CrossRef]
- Hooft, G. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys. B 1974, 79, 276–284. [Google Scholar] [CrossRef]
- Polyakov, A.M. Particle Spectrum in the Quantum Field Theory. JETP Lett. 1974, 20, 194. [Google Scholar]
- Julia, B.; Zee, A. Poles with Both Magnetic and Electric Charges in Nonabelian Gauge Theory. Phys. Rev. D 1975, 11, 2227–2232. [Google Scholar] [CrossRef]
- Nambu, Y. String-Like Configurations in the Weinberg-Salam Theory. Nucl. Phys. B 1977, 130, 505–515. [Google Scholar] [CrossRef]
- Witten, E. Dyons of Charge eθ/2π. Phys. Lett. 1979, 86, 283–287. [Google Scholar] [CrossRef]
- Lazarides, G.; Magg, M.; Shafi, Q. Phase Transitions and Magnetic Monopoles in SO(10). Phys. Lett. 1980, 97, 87–92. [Google Scholar] [CrossRef]
- Sorkin, R.D. Kaluza-Klein Monopole. Phys. Rev. Lett. 1983, 51, 87–90. [Google Scholar] [CrossRef]
- Gross, D.J.; Perry, M.J. Magnetic Monopoles in Kaluza-Klein Theories. Nucl. Phys. B 1983, 226, 29–48. [Google Scholar] [CrossRef]
- Schwinger, J.S. A Magnetic model of matter. Science 1969, 165, 757–761. [Google Scholar] [CrossRef]
- Preskill, J. Magnetic Monopoles. Ann. Rev. Nucl. Part. Sci. 1984, 34, 461–530. [Google Scholar] [CrossRef]
- Achucarro, A.; Vachaspati, T. Semilocal and electroweak strings. Phys. Rep. 2000, 327, 347–426. [Google Scholar] [CrossRef]
- Kephart, T.W.; Lee, C.A.; Shafi, Q. Family unification, exotic states and light magnetic monopoles. JHEP 2007, 0701, 088. [Google Scholar] [CrossRef]
- Pak, D.G.; Zhang, P.M.; Zou, L.P. On finite energy monopole solutions in Weinberg-Salam model. Int. J. Mod. Phys. A 2015, 30, 1550164. [Google Scholar] [CrossRef]
- Rajantie, A. Mass of a quantum ’t Hooft–Polyakov monopole. JHEP 2006, 0601, 088. [Google Scholar] [CrossRef]
- Kephart, T.W.; Leontaris, G.K.; Shafi, Q. Magnetic Monopoles and Free Fractionally Charged States at Accelerators and in Cosmic Rays. JHEP 2017, 1710, 176. [Google Scholar] [CrossRef]
- Cho, Y.M.; Maison, D. Monopoles in Weinberg-Salam model. Phys. Lett. B 1997, 391, 360–365. [Google Scholar] [CrossRef]
- Bae, W.S.; Cho, Y.M. Finite energy electroweak dyon. J. Korean Phys. Soc. 2005, 46, 791–804. [Google Scholar]
- Mavromatos, N.E.; Mitsou, V.A. Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos. Mod. Phys. Lett. A. in preparation. [CrossRef]
- Dirac, P.A.M. The Theory of magnetic poles. Phys. Rev. 1948, 74, 817–830. [Google Scholar] [CrossRef]
- Rajantie, A. Introduction to Magnetic Monopoles. Contemp. Phys. 2012, 53, 195–211. [Google Scholar] [CrossRef]
- Rajantie, A. The search for magnetic monopoles. Phys. Today 2016, 69, 40–46. [Google Scholar] [CrossRef]
- Vento, V.; Mantovani, V.S. On the magnetic monopole mass. arXiv 2013, arXiv:1306.4213. [Google Scholar]
- Cho, Y.M.; Kimm, K.; Yoon, J.H. Mass of the Electroweak Monopole. Mod. Phys. Lett. A 2016, 31, 1650053. [Google Scholar] [CrossRef]
- Cho, Y.M.; Kimm, K.; Yoon, J.H. Gravitationally Coupled Electroweak Monopole. Phys. Lett. B 2016, 761, 203–206. [Google Scholar] [CrossRef]
- Ellis, J.; Mavromatos, N.E.; You, T. The Price of an Electroweak Monopole. Phys. Lett. B 2016, 756, 29–35. [Google Scholar] [CrossRef]
- Barriola, M.; Vilenkin, A. Gravitational Field of a Global Monopole. Phys. Rev. Lett. 1989, 63, 341–343. [Google Scholar] [CrossRef]
- Mazur, P.O.; Papavassiliou, J. Gravitational scattering on a global monopole. Phys. Rev. D 1991, 44, 1317–1320. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Papavassiliou, J. Singular lensing from the scattering on special space-time defects. Eur. Phys. J. C 2018, 78, 68. [Google Scholar] [CrossRef]
- Drukier, A.K.; Nussinov, S. Monopole Pair Creation in Energetic Collisions: Is It Possible? Phys. Rev. Lett. 1982, 49, 102–105. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S. Magnetic monopoles from global monopoles in the presence of a Kalb-Ramond field. Phys. Rev. D 2017, 95, 104025. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S. Regularised Kalb-Ramond Magnetic Monopole with Finite Energy. Phys. Rev. D 2018, 97, 125010. [Google Scholar] [CrossRef]
- Sarkar, S.; Mavromatos, N.E. Finite-Energy Dressed String-Inspired Dirac-Like Monopoles. Universe 2019, 5, 8. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Khlopov, M.Y. On the Concentration of Relic Magnetic Monopoles in the Universe. Phys. Lett. 1978, 79, 239–241. [Google Scholar] [CrossRef]
- Hill, C.T. Monopolonium. Nucl. Phys. B 1983, 224, 469–490. [Google Scholar] [CrossRef]
- Dubrovich, V.K. Association of magnetic monopoles and antimonopoles in the early universe. Grav. Cosmol. Suppl. 2002, 8, 122–125. [Google Scholar]
- Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Vento, V. Monopolium: The Key to monopoles. Eur. Phys. J. C 2008, 56, 87–95. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Vento, V. Monopolium production from photon fusion at the Large Hadron Collider. Eur. Phys. J. C 2009, 62, 587–592. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Mitsou, V.A.; Vento, V. Looking for magnetic monopoles at LHC with diphoton events. Eur. Phys. J. Plus 2012, 127, 60. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Mitsou, V.A.; Vento, V. Can the 750 GeV enhancement be a signal of light magnetic monopoles? arXiv 2016, arXiv:1607.05592. [Google Scholar]
- Fanchiotti, H.; Garcia Canal, C.A.; Vento, V. Multiphoton annihilation of monopolium. Int. J. Mod. Phys. A 2017, 32, 1750202. [Google Scholar] [CrossRef]
- Vento, V. Ions, Protons, and Photons as Signatures of Monopoles. Universe 2018, 4, 117. [Google Scholar] [CrossRef]
- Baldenegro, C.; Fichet, S.; von Gersdorff, G.; Royon, C. Searching for axion-like particles with proton tagging at the LHC. JHEP 2018, 1806, 131. [Google Scholar] [CrossRef]
- Turner, M.S.; Parker, E.N.; Bogdan, T.J. Magnetic Monopoles and the Survival of Galactic Magnetic Fields. Phys. Rev. D 1982, 26, 1296–1305. [Google Scholar] [CrossRef]
- Cabrera, B. First Results from a Superconductive Detector for Moving Magnetic Monopoles. Phys. Rev. Lett. 1982, 48, 1378–1380. [Google Scholar] [CrossRef]
- Huber, M.E.; Cabrera, B.; Taber, M.A.; Gardner, R.D. Limit on the flux of cosmic ray magnetic monopoles from operation of an eight loop superconducting detector. Phys. Rev. Lett. 1990, 64, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Patrizii, L.; Spurio, M. Status of Searches for Magnetic Monopoles. Ann. Rev. Nucl. Part. Sci. 2015, 65, 279–302. [Google Scholar] [CrossRef]
- Ambrosio, M.; Antolini, R.; Assiro, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barbarito, E.; Barish, B.C.; Battistoni, G.; et al. The MACRO detector at Gran Sasso. Nucl. Instrum. Meth. A 2002, 486, 663–707. [Google Scholar] [CrossRef]
- MACRO Collaboration. Final results of magnetic monopole searches with the MACRO experiment. Eur. Phys. J. C 2002, 25, 511–522. [Google Scholar] [CrossRef]
- Orito, S.; Ichinose, H.; Nakamura, S.; Kuwahara, K.; Doke, T.; Ogura, K.; Tawara, H.; Imori, M.; Yamamoto, K.; Yamakawa, H.; et al. Search for supermassive relics with 2000-m2 array of plastic track detector. Phys. Rev. Lett. 1991, 66, 1951–1954. [Google Scholar] [CrossRef]
- Novoseltsev, Y.F.; Boliev, M.M.; Butkevich, A.V.; Mikheev, S.P.; Petkov, V.B. A search for massive magnetic monopoles at the Baksan Underground Scintillation Telescope (BUST). Nucl. Phys. Proc. Suppl. 2006, 151, 337–340. [Google Scholar] [CrossRef]
- Thron, J.L.; Allison, W.W.M.; Alner, G.J.; Ambats, I.; Ayres, D.S.; Balka, L.J.; Barr, G.D.; Barrett, W.L.; Benjamin, D.; Border, P.M.; et al. Search for magnetic monopoles with the Soudan 2 detector. Phys. Rev. D 1992, 46, 4846–4851. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, M.R.; Menon, M.G.K.; Mondal, N.K.; Narasimham, V.S.; Sreekantan, B.V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S. Limits On The Flux Of Monopoles From The Kolar Gold Mine Experiments. Phys. Lett. 1984, 142, 99–102. [Google Scholar] [CrossRef]
- Balestra, S.; Cecchini, S.; Cozzi, M.; Errico, M.; Fabbri, F.; Giacomelli, G.; Giacomelli, R.; Giorgini, M.; Kumar, A.; Manzoor, S.; et al. Magnetic monopole search at high altitude with the SLIM experiment. Eur. Phys. J. C 2008, 55, 57–63. [Google Scholar] [CrossRef]
- Aynutdinov, V.; Avrorin, A.; Balkanov, V.; Belolaptikov, I.; Budnev, N.; Danilchenko, I.; Domogatsky, G.; Doroshenko, A.; Dyachok, A.; Dzhilkibaev, Z.-A.; et al. Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope. Astropart. Phys. 2008, 29, 366–372. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Search for relativistic magnetic monopoleswith the AMANDA-II neutrino telescope. Eur. Phys. J. C 2010, 69, 361–378. [Google Scholar] [CrossRef]
- ANTARES Collaboration. Search for Relativistic Magnetic Monopoles with the ANTARES Neutrino Telescope. Astropart. Phys. 2012, 35, 634–640. [Google Scholar] [CrossRef]
- ANTARES Collaboration. Search for relativistic magnetic monopoles with five years of the ANTARES detector data. JHEP 2017, 1707, 054. [Google Scholar] [CrossRef]
- IceCube Collaboration. Search for relativistic magnetic monopoles with IceCube. Phys. Rev. D 2013, 87, 022001. [Google Scholar] [CrossRef]
- IceCube Collaboration. Searches for relativistic magnetic monopoles in IceCube. Eur. Phys. J. C 2016, 76, 133. [Google Scholar] [CrossRef]
- IceCube Collaboration. Search for non-relativistic magnetic monopoles with IceCube. Eur. Phys. J. C 2014, 74, 2938. [Google Scholar] [CrossRef]
- IceCube Collaboration. Luminescence of water or ice as a new detection method for magnetic monopoles. EPJ Web Conf. 2017, 164, 07019. [Google Scholar] [CrossRef]
- Hogan, D.P.; Besson, D.Z.; Ralston, J.P.; Kravchenko, I.; Seckel, D. Relativistic Magnetic Monopole Flux Constraints from RICE. Phys. Rev. D 2008, 78, 075031. [Google Scholar] [CrossRef]
- ANITA-II Collaboration. Ultrarelativistic magnetic monopole search with the ANITA-II balloon-borne radio interferometer. Phys. Rev. D 2011, 83, 023513. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Phys. Rev. D 2016, 94, 082002. [Google Scholar] [CrossRef]
- Lee, L.; Ohm, C.; Soffer, A.; Yu, T.T. Collider Searches for Long-Lived Particles Beyond the Standard Model. Prog. Part. Nucl. Phys. 2019, 106, 210. [Google Scholar] [CrossRef]
- Alimena, J.; Beacham, J.; Borsato, M.; Cheng, Y.; Vidal, X.C.; Cottin, G.; Roeck, A.D.; Desai, N.; Curtin, D.; Evans, J.A.; et al. Searching for Long-Lived Particles beyond the Standard Model at the Large Hadron Collider. arXiv 2019, arXiv:1903.04497. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar] [CrossRef]
- Gould, O.; Rajantie, A. Magnetic monopole mass bounds from heavy ion collisions and neutron stars. Phys. Rev. Lett. 2017, 119, 241601. [Google Scholar] [CrossRef]
- Gould, O.; Mangl, S.; Rajantie, A.; Rose, S.; Xie, C. Observing Thermal Schwinger Pair Production. Phys. Rev. A 2019, 99, 052120. [Google Scholar] [CrossRef]
- Baines, S.; Mavromatos, N.E.; Mitsou, V.A.; Pinfold, J.L.; Santra, A. Monopole production via photon fusion and Drell–Yan processes: MadGraph implementation and perturbativity via velocity-dependent coupling and magnetic moment as novel features. Eur. Phys. J. C 2018, 78, 966. [Google Scholar] [CrossRef] [PubMed]
- Santra, A. Production of Magnetic Monopoles via Photon Fusion— Implementation in MadGraph. Proceedings 2019, 13, 4. [Google Scholar] [CrossRef]
- Baines, S. Effective Field Theory Treatment of Monopole Production by Drell–Yan and Photon Fusion for Various Spins. MDPI Proc. 2019, 13, 1. [Google Scholar] [CrossRef]
- CDF Collaboration. Direct search for Dirac magnetic monopoles in collisions at = 1.96 TeV. Phys. Rev. Lett. 2006, 96, 201801. [Google Scholar] [CrossRef]
- Kalbfleisch, G.R.; Luo, W.; Milton, K.A.; Smith, E.H.; Strauss, M.G. Limits on production of magnetic monopoles utilizing samples from the D0 and CDF detectors at the Tevatron. Phys. Rev. D 2004, 69, 052002. [Google Scholar] [CrossRef]
- Price, P.B.; Ren, G.X.; Kinoshita, K. Search for Highly Ionizing Particles at the Fermilab Proton Anti-proton Collider. Phys. Rev. Lett. 1987, 59, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Aubert, B.; Musset, P.; Price, M.; Vialle, J.P. Search for Magnetic Monopoles in Proton-Anti-proton Interactions at 540-GeV Center-of-mass Energy. Phys. Lett. 1983, 120, 465–467. [Google Scholar] [CrossRef]
- Carrigan, R.A.; Nezrick, F.A.; Strauss, B.P. Search for Magnetic Monopole Production by 300-GeV Protons. Phys. Rev. D 1973, 8, 3717–5720. [Google Scholar] [CrossRef]
- OPAL Collaboration. Search for Dirac magnetic monopoles in e+e− collisions with the OPAL detector at LEP2. Phys. Lett. B 2008, 663, 37–42. [Google Scholar] [CrossRef]
- Pinfold, J.L.; Du, R.; Kinoshita, K.; Lorazo, B.; Regimbald, M.; Price, B. A Search for highly ionizing particles produced at the OPAL intersection point at LEP. Phys. Lett. B 1993, 316, 407–411. [Google Scholar] [CrossRef]
- Kinoshita, K.; Du, R.; Giacomelli, G.; Patrizii, L.; Predieri, F.; Serra, P.; Spurio, M.; Pinfold, J.L. Search for highly ionizing particles in e+e− annihilations at = 91.1-GeV. Phys. Rev. D 1992, 46, R881–R884. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K.; Fujii, M.; Nakajima, K.; Price, P.B.; Tasaka, S. Search for Highly Ionizing Particles in e+e− Annihilations at = 50-GeV to 60.8-GeV. Phys. Lett. B 1989, 228, 543–547. [Google Scholar] [CrossRef]
- Musset, P.; Price, M.; Lohrmann, E. Search for Magnetic Monopoles in Electron - Positron Collisions at 34-GeV Center-of-mass Energy. Phys. Lett. 1983, 128, 333–335. [Google Scholar] [CrossRef]
- CLEO Collaboration. Search for magnetically charged particles produced in e+e− annihilations at = 10.6 GeV. Phys. Rev. D 1987, 35, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- TASSO Collaboration. A Search for Particles With Magnetic Charge Produced in e+e− Annihilations at = 35 GeV. Z. Phys. C 1988, 38, 543–550. [Google Scholar] [CrossRef]
- ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST 2008, 3, S08003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for magnetic monopoles in = 7 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 2012, 109, 261803. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp Collisions ATLAS Detector. Phys. Rev. D 2016, 93, 052009. [Google Scholar] [CrossRef]
- Akesson, T.; Arik, E.; Assamagan, K.; Baker, K.; Barberio, E.; Barberis, D.; Bertelsen, H.; Bytchkov, V.; Callahan, J.; Catinaccio, A.; Danielsson, H.; et al. Particle identification using the time-over-threshold method in the ATLAS Transition Radiation Tracker. Nucl. Instrum. Methods A 2001, 474, 172–187. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: Tracker properties. JINST 2017, 12, P05002. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector. arXiv 2019, arXiv:1905.10130. [Google Scholar]
- MoEDAL Collaboration. Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb−1 13 TeV proton-proton collisions at the LHC. Phys. Lett. B 2018, 782, 510–516. [Google Scholar] [CrossRef]
- MoEDAL Collaboration. Technical Design Report of the MoEDAL Experiment; CERN-LHCC-2009-006; MoEDAL-TDR-001; 2009; Available online: http://inspirehep.net/record/1299494/ (accessed on 15 November 2018).
- MoEDAL. Available online: http://moedal.web.cern.ch/ (accessed on 15 November 2018).
- Pinfold, J.L. The MoEDAL Experiment at the LHC—A Progress Report from the High Energy Frontier. Universe 2019, 5, 47. [Google Scholar] [CrossRef]
- DeRoeck, A.; Katre, A.; Mermod, P.; Milstead, D.; Sloan, T. Sensitivity of LHC Experiments to Exotic Highly Ionising Particles. Eur. Phys. J. C 2012, 72, 1985. [Google Scholar] [CrossRef]
- MoEDAL Collaboration. The Physics Programme of the MoEDAL Experiment at the LHC. Int. J. Mod. Phys. A 2014, 29, 1430050. [Google Scholar] [CrossRef]
- Fairbairn, M.; Kraan, A.C.; Milstead, D.A.; Sjöstrand, T.; Skands, P.; Sloan, T. Stable massive particles at colliders. Phys. Rept. 2007, 438, 1–63. [Google Scholar] [CrossRef]
- Burdin, S.; Fairbairn, M.; Mermod, P.; Milstead, D.; Pinfold, J.; Sloan, T.; Taylor, W. Non-collider searches for stable massive particles. Phys. Rept. 2015, 582, 1–52. [Google Scholar] [CrossRef]
- DeRoeck, A.; Hächler, H.P.; Hirt, A.M.; Joergensen, M.-D.; Katre, A.; Mermod, P.; Milstead, D.; Sloan, T. Development of a magnetometer-based search strategy for stopped monopoles at the Large Hadron Collider. Eur. Phys. J. C 2012, 72, 2212. [Google Scholar] [CrossRef]
- MoEDAL Collaboration. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC. JHEP 2016, 1608, 067. [Google Scholar] [CrossRef]
- MoEDAL Collaboration. Search for magnetic monopoles with the MoEDAL forward trapping detector in 13 TeV proton-proton collisions at the LHC. Phys. Rev. Lett. 2017, 118, 061801. [Google Scholar] [CrossRef]
- MoEDAL Collaboration. Magnetic monopole search with the full MoEDAL trapping detector in 13 TeV pp collisions interpreted in photon-fusion and Drell–Yan production. Phys. Rev. Lett. 2019, 123, 021802. [Google Scholar] [CrossRef] [PubMed]
- CMS Beam Pipe to be Mined for Monopoles. CERN Courier. 8 March 2019, p. 8. Available online: https://cerncourier.com/cms-beam-pipe-to-be-mined-for-monopoles/ (accessed on 1 April 2019).
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsou, V.A. Searches for Magnetic Monopoles: A Review. Proceedings 2019, 13, 10. https://doi.org/10.3390/proceedings2019013010
Mitsou VA. Searches for Magnetic Monopoles: A Review. Proceedings. 2019; 13(1):10. https://doi.org/10.3390/proceedings2019013010
Chicago/Turabian StyleMitsou, Vasiliki A. 2019. "Searches for Magnetic Monopoles: A Review" Proceedings 13, no. 1: 10. https://doi.org/10.3390/proceedings2019013010
APA StyleMitsou, V. A. (2019). Searches for Magnetic Monopoles: A Review. Proceedings, 13(1), 10. https://doi.org/10.3390/proceedings2019013010