Topological Machine Learning for Discriminative Spectral Band Identification in Raman Spectroscopy of Pathological Samples †
Abstract
1. Introduction
2. Materials and Methods
- Input: Raman spectra of biological samples;
- Preprocessing and feature extraction: Same as original model (when applicable);
- Sliding window masking: Iterative masking with 10-width window and 5 stride to identify critical spectral regions;
- Importance estimation: Performance drop on masked spectra indicates diagnostically relevant regions.
3. Results
- A representative Raman spectrum (intensity a.u. vs. wavenumber cm);
- Performance drop curve (accuracy loss percentage vs. wavenumber cm).
- Alzheimer’s: Performance drop threshold: 30%. Key regions: 904–956 cm, 1146–1198 cm, and 1224–1313 cm peaks.
- Chondrogenic: Performance drop threshold: 3%. Primary peak: 997–1016 cm. For 4-class: additional peaks at 725–748 cm, 997–1072 cm, and 1384–1394 cm.
- PDA: Performance drop threshold: 30% (3-class) and 45% (binary)s. Key features: 1250–1302 cm peak and 958–973 cm valley.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 12371–12376. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, K.; Stiebing, C.; Matthäus, C.; Schmitt, M.; Popp, J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Rev. Mol. Diagn. 2015, 15, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Polykretis, P.; Banchelli, M.; D’Andrea, C.; de Angelis, M.; Matteini, P. Raman Spectroscopy Techniques for the Investigation and Diagnosis of Alzheimer’s Disease. Front. Biosci. 2022, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Lazzini, G.; Gaeta, R.; Pollina, L.E.; Comandatore, A.; Furbetta, N.; Morelli, L.; D’Acunto, M. Raman spectroscopy based diagnosis of pancreatic ductal adenocarcinoma. Sci. Rep. 2025, 15, 13240. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Moroni, D.; Pascali, M.A. A topological machine learning pipeline for classification. Mathematics 2022, 10, 3086. [Google Scholar] [CrossRef]
- Petsiuk, V.; Das, A.; Saenko, K. RisE: Randomized input sampling for explanation of black-box models. In Proceedings of the British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018. [Google Scholar]
- Conti, F.; D’Acunto, M.; Caudai, C.; Colantonio, S.; Gaeta, R.; Moroni, D.; Pascali, M.A. Raman spectroscopy and topological machine learning for cancer grading. Sci. Rep. 2023, 13, 7282. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Banchelli, M.; Bessi, V.; Cecchi, C.; Chiti, F.; Colantonio, S.; D’Andrea, C.; de Angelis, M.; Moroni, D.; Nacmias, B.; et al. Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer’s disease detection via cerebrospinal fluid analysis. J. Frankl. Inst. 2024, 361, 107249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, F.; Moroni, D.; Pascali, M.A. Topological Machine Learning for Discriminative Spectral Band Identification in Raman Spectroscopy of Pathological Samples. Proceedings 2025, 129, 53. https://doi.org/10.3390/proceedings2025129053
Conti F, Moroni D, Pascali MA. Topological Machine Learning for Discriminative Spectral Band Identification in Raman Spectroscopy of Pathological Samples. Proceedings. 2025; 129(1):53. https://doi.org/10.3390/proceedings2025129053
Chicago/Turabian StyleConti, Francesco, Davide Moroni, and Maria Antonietta Pascali. 2025. "Topological Machine Learning for Discriminative Spectral Band Identification in Raman Spectroscopy of Pathological Samples" Proceedings 129, no. 1: 53. https://doi.org/10.3390/proceedings2025129053
APA StyleConti, F., Moroni, D., & Pascali, M. A. (2025). Topological Machine Learning for Discriminative Spectral Band Identification in Raman Spectroscopy of Pathological Samples. Proceedings, 129(1), 53. https://doi.org/10.3390/proceedings2025129053