Exact Solutions of the (2+1)-Dimensional Generalized Burgers–Fisher Equation via Lie Symmetry and Generalized Bernoulli Method †
Abstract
1. Introduction
2. Application of Lie Group Analysis
- Reduction by .
- Reduction by .
- Reduction by .
- Reduction by .
- Reduction by .
3. Generalized Bernoulli Equation Method
3.1. Overview
3.2. Method Application
4. Graphical Analysis of Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veksler, A.; Zarmi, Y. Wave interactions and the analysis of the perturbed Burgers equation. Physica D 2005, 211, 57–73. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Frank-Kamenetskii, D.A. Diffusion and Heat Exchange in Chemical Kinetics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 355–369. [Google Scholar] [CrossRef]
- Liang, D.; Liu, C. The isolated periodic wave solution of generalized Burgers-Fisher equation. Commun. Nonlinear Sci. Numer. Simul. 2025, 152, 109151. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Kumar, A. Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. Chaos Solitons Fractals 2021, 142, 110507. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K. Lie symmetry analysis, optimal system, exact solutions and dynamics of solitons of a (3+1)-dimensional generalised BKP–Boussinesq equation. Pramana 2022, 96, 31. [Google Scholar] [CrossRef]
- Riaz, M.B.; Jhangeer, A.; Duraihem, F.Z. Analyzing dynamics: Lie symmetry approach to bifurcation, chaos, multistability, and solitons in extended (3+1)-dimensional wave equation. Symmetry 2024, 16, 608. [Google Scholar] [CrossRef]
- Li, Y.; Yao, R.; Lou, S. An extended Hirota bilinear method and new wave structures of (2+1)-dimensional Sawada–Kotera equation. Appl. Math. Lett. 2023, 145, 108760. [Google Scholar] [CrossRef]
- Xin, W.; Jing, S.H. Darboux transformation and general soliton solutions for the reverse space–time nonlocal short pulse equation. Physica D 2023, 446, 133639. [Google Scholar]
- Li, Y.X.; Bai, Y.S. Exact Solutions and Conservation Laws of the Generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt System via Lie Symmetry and Riccati Equation Methods. J. Nonlinear Math. Phys. 2025, 32, 38. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, T.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82, 065003. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S.; Abdou, M.A. New exact solutions for time-fractional Kaup-Kupershmidt equation using improved (G′/G)-expansion and extended (G′/G)-expansion methods. Alex. Eng. J. 2020, 59, 3105–3110. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equation; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Patera, J.; Winternitz, P. Subalgebras of real three-and four-dimensional Lie algebras. J. Math. Phys. 1977, 18, 1449–1455. [Google Scholar] [CrossRef]
- Hussein, A.; Selim, M.M. New soliton solutions for some important nonlinear partial differential equations using a generalized Bernoulli method. Int. J. Math. Anal. Appl. 2014, 1, 1–8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-X.; Bai, Y.-S. Exact Solutions of the (2+1)-Dimensional Generalized Burgers–Fisher Equation via Lie Symmetry and Generalized Bernoulli Method. Proceedings 2025, 123, 7. https://doi.org/10.3390/proceedings2025123007
Li Y-X, Bai Y-S. Exact Solutions of the (2+1)-Dimensional Generalized Burgers–Fisher Equation via Lie Symmetry and Generalized Bernoulli Method. Proceedings. 2025; 123(1):7. https://doi.org/10.3390/proceedings2025123007
Chicago/Turabian StyleLi, Yu-Xiang, and Yu-Shan Bai. 2025. "Exact Solutions of the (2+1)-Dimensional Generalized Burgers–Fisher Equation via Lie Symmetry and Generalized Bernoulli Method" Proceedings 123, no. 1: 7. https://doi.org/10.3390/proceedings2025123007
APA StyleLi, Y.-X., & Bai, Y.-S. (2025). Exact Solutions of the (2+1)-Dimensional Generalized Burgers–Fisher Equation via Lie Symmetry and Generalized Bernoulli Method. Proceedings, 123(1), 7. https://doi.org/10.3390/proceedings2025123007