Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors †
1. Introduction
2. Model
2.1. Electromechanical Qubits
2.2. Digital Quantum Simulations
3. Results
4. Discussion
Acknowledgments
Conflicts of Interest
References
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum Simulation. Rev. Mod. Phys. 2014, 86, 153. [Google Scholar] [CrossRef]
- Somma, R.; Ortiz, G.; Gubernatis, J.E.; Knill, E.; Laflamme, R. Simulating physical phenomena by quantum networks. Phys. Rev. A 2002, 65, 042323. [Google Scholar] [CrossRef]
- Lloyd, S. Universal Quantum Simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Schindler, P.; Nigg, D.; Monz, T.; Barreiro, J.T.; Martinez, E.; Wang, S.X.; Quint, S.; Brandl, M.F.; Nebendahl, V.; Roos, C.F.; et al. A quantum information processor with trapped ions. New J. Phys. 2013, 15, 123012. [Google Scholar] [CrossRef]
- Las Heras, U.; Mezzacapo, A.; Lamata, L.; Filipp, S.; Wallraff, A.; Solano, E. Digital Quantum Simulation of Spin Systems in Superconducting Circuits. Phys. Rev. Lett. 2014, 112, 200501. [Google Scholar] [CrossRef]
- Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A.G.; Megrant, A.; Jeffrey, E.; White, T.C.; Sank, D.; Mutus, J.Y.; et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 2015, 6, 7654. [Google Scholar] [CrossRef]
- Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, A.; Las Heras, U.; Lamata, L.; Solano, E.; et al. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X 2015, 5, 021027. [Google Scholar] [CrossRef]
- Santini, P.; Carretta, S.; Troiani, F.; Amoretti, G. Molecular nanomagnets as quantum simulators. Phys. Rev. Lett. 2011, 107, 230502. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, J.M.; Chow, J.M.; Steffen, M. Building logical qubits in a superconducting quantum computing system. npj Quant. Inf. 2017, 3, 2. [Google Scholar] [CrossRef]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Kurizki, G.; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P.; Schmiedmayer, J. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. USA 2015, 112, 3866–3873. [Google Scholar] [CrossRef] [PubMed]
- Carretta, S.; Chiesa, A.; Troiani, F.; Gerace, D.; Amoretti, G.; Santini, P. Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 2013, 111, 110501. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.; Gerace, D.; Troiani, F.; Amoretti, G.; Santini, P.; Carretta, S. Robustness of quantum gates with hybrid spin-photon qubits in superconducting resonators. Phys. Rev. A 2014, 89, 052308. [Google Scholar] [CrossRef]
- Chiesa, A.; Santini, P.; Gerace, D.; Raftery, J.; Houck, A.A.; Carretta, S. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits. Sci. Rep. 2015, 5, 16036. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.; Santini, P.; Gerace, D.; Carretta, S. Long-lasting hybrid quantum information processing in a cavity-protection regime. Phys. Rev. B 2016, 93, 094432. [Google Scholar] [CrossRef]
- Tacchino, F.; Chiesa, A.; LaHaye, M.D.; Carretta, S.; Gerace, D. Electromechanical quantum simulators. Phys. Rev. B 2018, 97, 214302. [Google Scholar] [CrossRef]
- IBM Q Quantum Computing. Available online: https://www.research.ibm.com/ibm-q/ (accessed on 16 September 2018).
- Qiskit Official Website. Available online: https://qiskit.org/ (accessed on 16 September 2018).
- Chiesa, A.; Tacchino, F.; Grossi, M.; Santini, P.; Tavernelli, I.; Gerace, D.; Carretta, S. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Physics 2019, 15, 455–459. [Google Scholar] [CrossRef]
- Schuld, M.; Fingerhuth, M.; Petruccione, F. Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 2017, 119, 6002. [Google Scholar] [CrossRef]
- Otterbach, J.S.; Manenti, R.; Alidoust, N.; Bestwick, A.; Block, M.; Bloom, B.; Caldwell, S.; Didier, N.; Fried, E.S.; Hong, S.; et al. Unsupervised Machine Learning on a Hybrid Quantum Computer. arXiv 2017, arXiv:1712.05771. [Google Scholar]
- Tacchino, F.; Macchiavello, C.; Gerace, D.; Bajoni, D. An Artificial Neuron Implemented on an Actual Quantum Processor. npj Quant. Inf. 2019, 5, 26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacchino, F.; Chiesa, A.; LaHaye, M.D.; Tavernelli, I.; Carretta, S.; Gerace, D. Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors. Proceedings 2019, 12, 24. https://doi.org/10.3390/proceedings2019012024
Tacchino F, Chiesa A, LaHaye MD, Tavernelli I, Carretta S, Gerace D. Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors. Proceedings. 2019; 12(1):24. https://doi.org/10.3390/proceedings2019012024
Chicago/Turabian StyleTacchino, Francesco, Alessandro Chiesa, Matthew D. LaHaye, Ivano Tavernelli, Stefano Carretta, and Dario Gerace. 2019. "Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors" Proceedings 12, no. 1: 24. https://doi.org/10.3390/proceedings2019012024
APA StyleTacchino, F., Chiesa, A., LaHaye, M. D., Tavernelli, I., Carretta, S., & Gerace, D. (2019). Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors. Proceedings, 12(1), 24. https://doi.org/10.3390/proceedings2019012024