Dynamical Casimir Effect and State Transfer in the Ultrastrong Coupling Regime †
Abstract
:1. Introduction
2. Model
3. Rabi-Type State-Transfer Protocol
4. Results
5. Discussion
Acknowledgments
References
- Forn-Díaz, P.; García-Ripoll, J.J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M.A.; Belyansky, R.; Wilson, C.M.; Lupascu, A. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 2017, 13, 39. [Google Scholar] [CrossRef]
- Yoshihara, F.; Fuse, T.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Semba, K. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 2017, 13, 44. [Google Scholar] [CrossRef]
- Benenti, G.; D’Arrigo, A.; Siccardi, S.; Strini, G. Dynamical Casimir effect in quantum-information processing. Phys. Rev. A 2014, 90, 052313. [Google Scholar] [CrossRef]
- Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr. 2010, 82, 038105. [Google Scholar] [CrossRef]
- Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 2012, 84, 1. [Google Scholar] [CrossRef]
- de Liberato, S.; Gerace, D.; Carusotto, I.; Ciuti, C. Extracavity quantum vacuum radiation from a single qubit. Phys. Rev. A 2009, 80, 053810. [Google Scholar] [CrossRef]
- Jaskula, J.-C.; Partridge, G.B.; Bonneau, M.; Lopes, R.; Ruaudel, J.; Boiron, D.; Westbrook, C.I. Acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate. Phys. Rev. Lett. 2012, 109, 220401. [Google Scholar] [CrossRef] [PubMed]
- Benenti, G.; Siccardi, S.; Strini, G. Exotic states in the dynamical Casimir effect. Eur. Phys. J. D 2014, 68, 139. [Google Scholar] [CrossRef]
- Koghee, S.; Wouters, M. Dynamical Casimir emission from polariton condensates. Phys. Rev. Lett. 2014, 112, 036406. [Google Scholar] [CrossRef]
- Felicetti, S.; Sanz, M.; Lamata, L.; Romero, G.; Johansson, G.; Delsing, P.; Solano, E. Dynamical Casimir Effect Entangles Artificial Atoms. Phys. Rev. Lett. 2014, 113, 093602. [Google Scholar] [CrossRef]
- Benenti, G.; Strini, G. Dynamical Casimir effect and minimal temperature in quantum thermodynamics. Phys. Rev. A 2015, 91, 020502(R). [Google Scholar] [CrossRef]
- Sabín, C.; Fuentes, I.; Johansson, G. Quantum discord in the dynamical Casimir effect. Phys. Rev. A 2015, 92, 012314. [Google Scholar] [CrossRef]
- Sabín, C.; Adesso, G. Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 2015, 92, 042107. [Google Scholar] [CrossRef]
- Stassi, R.; de Liberato, S.; Garziano, L.; Spagnolo, B.; Savasta, S. Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 2015, 92, 013830. [Google Scholar] [CrossRef]
- Angaroni, F.; Benenti, G.; Strini, G. Reconstruction of electromagnetic field states by a probe qubit. Eur. Phys. J. D 2016, 70, 225. [Google Scholar] [CrossRef]
- Hoeb, F.; Angaroni, F.; Zoller, J.; Calarco, T.; Strini, G.; Montangero, S.; Benenti, G. Amplification of the parametric dynamical Casimir effect via optimal control. Phys. Rev. A 2017, 96, 033851. [Google Scholar] [CrossRef]
- Macrì, V.; Ridolfo, A.; di Stefano, O.; Kockum, A.F.; Nori, F.; Savasta, S. Nonperturbative dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings. Phys. Rev. X 2018, 8, 011031. [Google Scholar] [CrossRef]
- Angaroni, F.; Benenti, G.; Strini, G. Applications of Picard and Magnus expansions to the Rabi model. Eur. Phys. J. D 2018, 72, 188. [Google Scholar] [CrossRef]
- Blais, A.; Huang, R.-S.; Wallraff, A.; Girvin, S.M.; Schoelkopf, R.J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 2004, 69, 062320. [Google Scholar] [CrossRef]
- Wallraff, A.; Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.-S.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 2004, 431, 162. [Google Scholar] [CrossRef]
- Sillanpää, M.A.; Park, J.I.; Simmonds, R.W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 2007, 449, 438. [Google Scholar] [CrossRef]
- Plastina, F.; Falci, G. Communicating josephson qubits. Phys. Rev. B 2003, 67, 224514. [Google Scholar] [CrossRef]
- Meystre, P.; Sargent, M., III. Elements of Quantum Optics, 4th ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Benenti, G.; Casati, G.; Rossini, D.; Strini, G. Principles of Quantum Computation and Information, 2nd ed.; World Scientific: Singapore, 2019; in press. [Google Scholar]
- Braak, D.; Chen, Q.-H.; Batchelor, M.T.; Solano, E. Semi-classical and quantum Rabi models: In celebration of 80 years. J. Phys. A Math. Theor. 2016, 49, 300301. [Google Scholar] [CrossRef]
- Benenti, G.; Siccardi, S.; Strini, G. Nonperturbative interpretation of the Bloch vector’s path beyond the rotating-wave approximation. Phys. Rev. A 2013, 88, 033814. [Google Scholar] [CrossRef]
- de Sousa, I.M.; Dodonov, A.V. Microscopic toy model for the cavity dynamical Casimir effect. J. Phys. A Math. Theor. 2015, 48, 245302. [Google Scholar] [CrossRef]
- Veloso, D.S.; Dodonov, A.V. Prospects for observing dynamical and anti-dynamical Casimir effects in circuit QED due to fast modulation of qubit parameters. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 165503. [Google Scholar] [CrossRef]
- Motazedifard, A.; Naderi, M.H.; Roknizadeh, R. Analogue model for controllable Casimir radiation in a nonlinear cavity with amplitude-modulated pumping: Generation and quantum statistical properties. J. Opt. Soc. Am. B 2015, 32, 1555. [Google Scholar] [CrossRef]
- Stramacchia, M.; Ridolfo, A.; Benenti, G.; Paladino, E.; Pellegrino, F.M.D.; Falci, G. Speedup of Adiabatic Multiqubit State-Transfer by Ultrastrong Coupling of Matter and Radiation. Proceedings 2019, 12, 35. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 2017, 89, 015006. [Google Scholar] [CrossRef]
- Rach, N.; Müller, M.M.; Calarco, T.; Montangero, S. Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape. Phys. Rev. A 2015, 92, 062343. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benenti, G.; Stramacchia, M.; Strini, G. Dynamical Casimir Effect and State Transfer in the Ultrastrong Coupling Regime. Proceedings 2019, 12, 12. https://doi.org/10.3390/proceedings2019012012
Benenti G, Stramacchia M, Strini G. Dynamical Casimir Effect and State Transfer in the Ultrastrong Coupling Regime. Proceedings. 2019; 12(1):12. https://doi.org/10.3390/proceedings2019012012
Chicago/Turabian StyleBenenti, Giuliano, Michele Stramacchia, and Giuliano Strini. 2019. "Dynamical Casimir Effect and State Transfer in the Ultrastrong Coupling Regime" Proceedings 12, no. 1: 12. https://doi.org/10.3390/proceedings2019012012