Radical Scavenging and Ion-Reducing Capacity of Fumaria officinalis Extracts Obtained by Traditional and Assisted Extraction Techniques †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extraction Technologies
2.3. Determination of the Antioxidant Capacity
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
CUPRAC | Cupric-ion-reducing antioxidant capacity |
FRAP | Ferric-reducing antioxidant potential |
IC50 | Concentration required to neutralize 50% of free radicals |
TE | Trolox equivalents |
UAE | Ultrasound-assisted extraction |
MAE | Microwave-assisted extraction |
References
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.; Đorđević, V.; Zdunić, G.; Pljevljakušić, D.; Šavikin, K.; Gođevac, D.; Bugarski, B. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Pur. Techn. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Khamtache-Abderrahim, S.; Lequart-Pillon, M.; Gontier, E.; Gaillard, I.; Pilard, S.; Mathiron, D.; Djoudad-Kadji, H.; Maiza-Benabdesselam, F. Isoquinoline alkaloid fractions of Fumaria officinalis: Characterization and evaluation of their antioxidant and antibacterial activities. Ind. Crops Prod. 2016, 94, 1001–1008. [Google Scholar] [CrossRef]
- Babaeimarzangou, S.S.; Aghajanshakeri, S.H.; Anousheh, D.; Mikaili, P. Ethno-botanical, bioactivities and medicinal mysteries of Fumaria officinalis (common fumitory). J. Pharm. Biomed. Sci. 2015, 05, 857–862. [Google Scholar]
- Adham, A.N.; Naqishbandi, A.M.; Efferth, T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J. Ethnopharmacol. 2021, 266, 113458. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; Akram, M.U.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations. AIMS Mol. Sci. 2024, 11, 150–188. [Google Scholar] [CrossRef]
- Saptarini, N.M.; Wardati, Y. Effect of extraction methods on antioxidant activity of papery skin extracts and fractions of Maja Cipanas onion (Allium cepa L. var. ascalonicum). Sci. World J. 2020, 2020, 3280534. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, Y.; Hou, X.; Gu, D.; Ba, H.; Abdulla, R.; Wu, G.; Xin, X.; Aisa, H.A. Bioassay-guided separation and purification of water-soluble antioxidants from Carthamus tinctorius L. by combination of chromatographic techniques. Sep. Purif. Technol. 2013, 104, 200–207. [Google Scholar] [CrossRef]
- Xi, J.; Yan, L. Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos Sophorae and evaluation of their antioxidant activity. Sep. Purif. Technol. 2017, 175, 170–176. [Google Scholar] [CrossRef]
- Petrović, P.; Ivanović, K.; Jovanović, A.; Simović, M.; Milutinović, V.; Kozarski, M.; Petković, M.; Cvetković, A.; Klaus, A.; Bugarski, B. The impact of puffball autolysis on selected chemical and biological properties: Puffball extracts as potential ingredients of skin-care products. Arch. Biol. Sci. 2019, 71, 721–733. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Afedzi, A.E.K.; Obeng-Boateng, F.; Aduama-Larbi, M.S.; Zhou, X.; Xu, Y. Valorization of Ghanaian cocoa processing residues as extractives for value-added functional food and animal feed additives—A review. Biocatal. Agric. Biotechnol. 2023, 52, 102835. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Rokeya, B.; Ahmed, S.; Bhowmik, A.; Khalil, M.; Gan, S. In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on Streptozotocin-induced type 2 diabetic model rats. Molecules 2012, 17, 12851–12867. [Google Scholar] [CrossRef] [PubMed]
- Edziri, H.; Guerrab, M.; Anthonissen, R.; Mastouri, M.; Verschaeve, L. Phytochemical screening, antioxidant, anticoagulant and in vitro toxic and genotoxic properties of aerial parts extracts of Fumaria officinalis L. growing in Tunisia. S. Afr. J. Bot. 2020, 130, 268–273. [Google Scholar] [CrossRef]
- Marcetic, M.; Arsenijević, J. Antioxidant activity of plant secondary metabolites. Arh. Farm. 2023, 73, 264–277. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Sözgen Başkan, K.; Erçağ, E.; Esin Çelik, S.; Baki, S.; Yıldız, L.; Karamanc, S.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Meth. 2011, 11, 2439–2453. [Google Scholar] [CrossRef]
- Ahmoda, R.A.; Pirković, A.; Milutinović, V.; Milošević, M.; Marinković, A.; Jovanović, A.A. Fumaria officinalis dust as a source of bioactives for potential dermal application: Optimization of extraction procedures, phytochemical profiling, and effects related to skin health benefits. Plants 2025, 14, 352. [Google Scholar] [CrossRef] [PubMed]
Sample | ABTS Assay (IC50, mg/mL) 1 | DPPH Assay (IC50, mg/mL) | CUPRAC Assay (µmol TE/g) | FRAP Assay (µmol Fe2+/g) |
---|---|---|---|---|
Macerate | 11.4 ± 0.1 b | 12.8 ± 0.1 b | 16.43 ± 0.45 b | 3.00 ± 0.15 a |
UAE extract | 8.6 ± 0.4 a | 12.0 ± 0.8 ab | 17.84 ± 0.85 a | 3.14 ± 0.21 a |
MAE extract | 9.5 ± 0.8 a | 11.4 ± 0.3 a | 18.05 ± 0.71 a | 3.27 ± 0.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmoda, R.A.; Pirković, A.; Milutinović, V.; Dekanski, D.; Marinković, A.; Jovanović, A.A. Radical Scavenging and Ion-Reducing Capacity of Fumaria officinalis Extracts Obtained by Traditional and Assisted Extraction Techniques. Proceedings 2025, 119, 2. https://doi.org/10.3390/proceedings2025119002
Ahmoda RA, Pirković A, Milutinović V, Dekanski D, Marinković A, Jovanović AA. Radical Scavenging and Ion-Reducing Capacity of Fumaria officinalis Extracts Obtained by Traditional and Assisted Extraction Techniques. Proceedings. 2025; 119(1):2. https://doi.org/10.3390/proceedings2025119002
Chicago/Turabian StyleAhmoda, Rabiea Ashowen, Andrea Pirković, Violeta Milutinović, Dragana Dekanski, Aleksandar Marinković, and Aleksandra A. Jovanović. 2025. "Radical Scavenging and Ion-Reducing Capacity of Fumaria officinalis Extracts Obtained by Traditional and Assisted Extraction Techniques" Proceedings 119, no. 1: 2. https://doi.org/10.3390/proceedings2025119002
APA StyleAhmoda, R. A., Pirković, A., Milutinović, V., Dekanski, D., Marinković, A., & Jovanović, A. A. (2025). Radical Scavenging and Ion-Reducing Capacity of Fumaria officinalis Extracts Obtained by Traditional and Assisted Extraction Techniques. Proceedings, 119(1), 2. https://doi.org/10.3390/proceedings2025119002