Wild Coffea Species: A Modern Genomic Approach to Unravel Variations for Future Cultivated Coffee Improvement †
Abstract
:1. Introduction
2. The Diversity of Wild Coffea Species
3. Characteristics of Interest of Wild Coffea Species
4. Genomic Research and Genome Sequencing
5. The “Bridges Coffea” Project
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohde, R. Global Temperature Report for 2023. In Berkeley Earth; 12 January 2024; Available online: https://berkeleyearth.org/global-temperature-report-for-2023/ (accessed on 14 July 2024).
- Raza, A.; Razzaq, A.; Mehmood, S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar] [CrossRef]
- Craparo, A.C.W.; Van Asten, P.J.A.; Läderach, P.; Jassogne, L.T.P.; Grab, S.W. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agric. For. Meteorol. 2015, 207, 1–10. [Google Scholar] [CrossRef]
- Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so robust: Robusta coffee production is highly sensitive to temperature. Glob. Chang. Biol. 2020, 26, 3677–3688. [Google Scholar] [CrossRef] [PubMed]
- Tavares, P.S.; Giarolla, A.; Chou, S.C.; Silva, A.J.P.; Lyra, A.A. Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Reg. Environ. Chang. 2018, 18, 873–883. [Google Scholar] [CrossRef]
- Produção de café no Paraná deve ser 40% menor do que previsto, diz estimativa do Deral—Centro do Comércio de Café do Estado de Minas Gerais. 7 March 2022. Available online: https://cccmg.com.br/producao-de-cafe-no-parana-deve-ser-40-menor-do-que-previsto-diz-estimativa-do-deral/ (accessed on 14 July 2024).
- Hamon, P.; Grover, C.E.; Davis, A.P.; Rakotomalala, J.-J.; Raharimalala, N.E.; Albert, V.A.; Sreenath, H.L.; Stoffelen, P.; Mitchell, S.E.; Couturon, E.; et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species. Mol. Phylogenet. Evol. 2017, 109, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Guyot, R.; Hamon, P.; Couturon, E.; Raharimalala, N.; Rakotomalala, J.-J.; Lakkanna, S.; Sabatier, S.; Affouard, A.; Bonnet, P. WCSdb: A database of wild Coffea species. Database 2020, 2020, baaa069. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Mieulet, D.; Moat, J.; Sarmu, D.; Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 2021, 7, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Rimlinger, A.; Raharimalala, N.; Letort, V.; Rakotomalala, J.-J.; Crouzillat, D.; Guyot, R.; Hamon, P.; Sabatier, S. Phenotypic diversity assessment within a major ex situ collection of wild endemic coffees in Madagascar. Ann. Bot. 2020, 126, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Rakotonasolo, F. A taxonomic revision of the baracoffea alliance: Nine remarkable Coffea species from western Madagascar. Bot. J. Linn. Soc. 2008, 158, 355–390. [Google Scholar] [CrossRef]
- Bezandry, R.; Dupeyron, M.; Gonzalez-Garcia, L.N.; Anest, A.; Hamon, P.; Ranarijaona, H.L.T.; Vavitsara, M.E.; Sabatier, S.; Guyot, R. The evolutionary history of three Baracoffea species from western Madagascar revealed by chloroplast and nuclear genomes. PLoS ONE 2024, 19, e0296362. [Google Scholar] [CrossRef] [PubMed]
- The IUCN Red List of Threatened Species. In IUCN Red List of Threatened Species; Available online: https://www.iucnredlist.org/en (accessed on 14 July 2024).
- Raharimalala, N.; Rombauts, S.; McCarthy, A.; Garavito, A.; Orozco-Arias, S.; Bellanger, L.; Morales-Correa, A.Y.; Froger, S.; Michaux, S.; Berry, V.; et al. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago. Sci. Rep. 2021, 11, 8119. [Google Scholar] [CrossRef] [PubMed]
- Bozan, I.; Achakkagari, S.R.; Anglin, N.L.; Ellis, D.; Tai, H.H.; Strömvik, M.V. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proc. Natl. Acad. Sci. USA 2023, 120, e2211117120. [Google Scholar] [CrossRef] [PubMed]
- Cochetel, N.; Minio, A.; Guarracino, A.; Garcia, J.F.; Figueroa-Balderas, R.; Massonnet, M.; Kasuga, T.; Londo, J.P.; Garrison, E.; Gaut, B.S.; et al. A super-pangenome of the North American wild grape species. Genome Biol. 2023, 24, 290. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; He, Q.; Wang, J.; Wang, B.; Zhao, J.; Huang, S.; Yang, T.; Tang, Y.; Yang, S.; Aisimutuola, P.; et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 2023, 55, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, H.; Gao, L.; Branham, S.; McGregor, C.; Renner, S.S.; Xu, Y.; Kousik, C.; Wechter, W.P.; Levi, A.; et al. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnol. J. 2023, 21, 1926–1928. [Google Scholar] [CrossRef] [PubMed]
- BRIDGES_COFFEA. Available online: https://www.bridgescoffea.org/ (accessed on 14 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guyot, R.; Gonzalez, L.; Bezandry, R. Wild Coffea Species: A Modern Genomic Approach to Unravel Variations for Future Cultivated Coffee Improvement. Proceedings 2024, 109, 23. https://doi.org/10.3390/ICC2024-18165
Guyot R, Gonzalez L, Bezandry R. Wild Coffea Species: A Modern Genomic Approach to Unravel Variations for Future Cultivated Coffee Improvement. Proceedings. 2024; 109(1):23. https://doi.org/10.3390/ICC2024-18165
Chicago/Turabian StyleGuyot, Romain, Laura Gonzalez, and Rickarlos Bezandry. 2024. "Wild Coffea Species: A Modern Genomic Approach to Unravel Variations for Future Cultivated Coffee Improvement" Proceedings 109, no. 1: 23. https://doi.org/10.3390/ICC2024-18165
APA StyleGuyot, R., Gonzalez, L., & Bezandry, R. (2024). Wild Coffea Species: A Modern Genomic Approach to Unravel Variations for Future Cultivated Coffee Improvement. Proceedings, 109(1), 23. https://doi.org/10.3390/ICC2024-18165