Next Article in Journal
Assessing the Removal Efficiency of Ibuprofen in an Aqueous Solution Using Acacia erioloba Nanoparticles
Previous Article in Journal
A Solution to Reduce the Carbon Footprint: Mineralization and Utilization of CO2 in Recycled Construction Aggregates
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Enhancing Carbon Capture Efficiency in Chemical Looping Combustion Using Fe2O3 and Mn2O3 Oxygen Carriers: Insights from ASPEN Plus Modeling †

Department of Chemical Engineering, Dharmsinh Desai University, Nadiad 387001, Gujarat, India
*
Author to whom correspondence should be addressed.
Presented at the 3rd International Electronic Conference on Processes—Green and Sustainable Process Engineering and Process Systems Engineering (ECP 2024), 29–31 May 2024; Available online: https://sciforum.net/event/ECP2024.
Proceedings 2024, 105(1), 100; https://doi.org/10.3390/proceedings2024105100
Published: 28 May 2024
This study investigates the carbon capture efficiency of a Chemical Looping Combustion (CLC) process employing Fe2O3 and Mn2O3 as oxygen carriers, modeled within the ASPEN Plus simulation platform. Evaluating various coal compositions characterized by diverse ultimate and proximate analyses, the study focuses on a temperature range spanning 950 to 980 °C. The investigation reveals consistently high carbon capture efficiencies across all coal types, achieving nearly pure CO2 capture. This exceptional performance highlights the potential of CLC technology as a robust solution for efficient carbon capture in coal combustion processes. The findings underscore its significance in mitigating greenhouse gas emissions, particularly within energy-intensive industries. By leveraging ASPEN Plus simulation, this research contributes to optimizing and refining CLC systems, offering insights crucial for enhancing their performance and scalability. The observed efficiencies underscore the versatility of CLC technology, which can accommodate various coal compositions while maintaining high capture rates. Such capabilities are pivotal in transitioning towards cleaner energy production and realizing climate mitigation goals. Overall, this study underscores the promising role of CLC technology in addressing carbon emissions from coal combustion. As industries strive to reduce their environmental footprint, advancements in carbon capture technologies, as demonstrated by CLC, emerge as indispensable components of sustainable energy strategies. The insights presented in this research provide valuable guidance for further developments in carbon capture technology, facilitating progress towards a more sustainable and environmentally conscious energy landscape.

Author Contributions

Conceptualization, D.G.; methodology, D.G. and S.S.; investigation, D.G. and S.S.; writing—original draft preparation, S.S.; writing—review and editing, D.G.; supervision, D.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Saradva, S.; Gandhi, D. Enhancing Carbon Capture Efficiency in Chemical Looping Combustion Using Fe2O3 and Mn2O3 Oxygen Carriers: Insights from ASPEN Plus Modeling. Proceedings 2024, 105, 100. https://doi.org/10.3390/proceedings2024105100

AMA Style

Saradva S, Gandhi D. Enhancing Carbon Capture Efficiency in Chemical Looping Combustion Using Fe2O3 and Mn2O3 Oxygen Carriers: Insights from ASPEN Plus Modeling. Proceedings. 2024; 105(1):100. https://doi.org/10.3390/proceedings2024105100

Chicago/Turabian Style

Saradva, Savan, and Dhrumil Gandhi. 2024. "Enhancing Carbon Capture Efficiency in Chemical Looping Combustion Using Fe2O3 and Mn2O3 Oxygen Carriers: Insights from ASPEN Plus Modeling" Proceedings 105, no. 1: 100. https://doi.org/10.3390/proceedings2024105100

APA Style

Saradva, S., & Gandhi, D. (2024). Enhancing Carbon Capture Efficiency in Chemical Looping Combustion Using Fe2O3 and Mn2O3 Oxygen Carriers: Insights from ASPEN Plus Modeling. Proceedings, 105(1), 100. https://doi.org/10.3390/proceedings2024105100

Article Metrics

Back to TopTop