You are currently viewing a new version of our website. To view the old version click .
Proceedings
  • Abstract
  • Open Access

12 April 2024

A Computational Study on Gold and Silver Nanoparticles against SARS-CoV-2 Proteins †

and
Laboratory of Microbiology Applied to the Food Industry, Biomedical and the Environment, Faculty of Natural and Life Sciences, Earth and Universe Sciences, Department of Biology, University of Tlemcen, Tlemcen 13000, Algeria
*
Author to whom correspondence should be addressed.
Presented at the 3rd International Electronic Conference on Biomolecules, 23–25 April 2024; Available online: https://sciforum.net/event/IECBM2024.
This article belongs to the Proceedings The 3rd International Electronic Conference on Biomolecules

Abstract

Metallic nanoparticles, such as gold and silver nanoparticles, are extraordinarily small particles composed of metal atoms at the nanoscale, typically ranging in size from 1 to 100 nanometers. These nanoparticles possess a plethora of unique and invaluable properties owing to their diminutive size, their exceptionally high surface-area-to-volume ratio, and the emergence of quantum effects at this scale. In this research, a computational simulation was conducted to explore the structural configurations of both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). Subsequently, geometry optimization techniques were applied to refine these structures. The optimized nanoparticle configurations were then systematically evaluated for their potential interactions with three specific targets within the SARS-CoV-2 virus: the Main protease (Mpro), the RNA-dependent RNA polymerase (RdRp), and the S spike glycoprotein. Notably, the results revealed that both AgNPs and AuNPs exhibited remarkable affinities for the active pockets of SARS-CoV-2 Mpro, suggesting their potential utility as inhibitors for this critical viral protein. Intriguingly, when considering RdRp, AgNPs displayed superior binding affinity compared to AuNPs, indicating their specific potential in targeting this component of the virus. Conversely, when assessing their interactions with the S spike glycoprotein, AuNPs demonstrated greater binding affinities than AgNPs, with more pocket residues being involved in this interaction. The versatility of gold and silver nanoparticles extends far beyond virology, as these materials find applications in diverse fields, including medicine, electronics, and environmental remediation. The findings presented here underscore their potential as versatile antiviral agents, providing a promising avenue for further in vitro and in vivo research to explore their efficacy in inhibiting the replication of the SARS-CoV-2 virus.

Author Contributions

Conceptualization, I.Z.; methodology, I.Z.; software, I.Z.; writing, I.Z.; validation, L.B.; supervision, L.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.