Abstract
Metallic nanoparticles, such as gold and silver nanoparticles, are extraordinarily small particles composed of metal atoms at the nanoscale, typically ranging in size from 1 to 100 nanometers. These nanoparticles possess a plethora of unique and invaluable properties owing to their diminutive size, their exceptionally high surface-area-to-volume ratio, and the emergence of quantum effects at this scale. In this research, a computational simulation was conducted to explore the structural configurations of both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). Subsequently, geometry optimization techniques were applied to refine these structures. The optimized nanoparticle configurations were then systematically evaluated for their potential interactions with three specific targets within the SARS-CoV-2 virus: the Main protease (Mpro), the RNA-dependent RNA polymerase (RdRp), and the S spike glycoprotein. Notably, the results revealed that both AgNPs and AuNPs exhibited remarkable affinities for the active pockets of SARS-CoV-2 Mpro, suggesting their potential utility as inhibitors for this critical viral protein. Intriguingly, when considering RdRp, AgNPs displayed superior binding affinity compared to AuNPs, indicating their specific potential in targeting this component of the virus. Conversely, when assessing their interactions with the S spike glycoprotein, AuNPs demonstrated greater binding affinities than AgNPs, with more pocket residues being involved in this interaction. The versatility of gold and silver nanoparticles extends far beyond virology, as these materials find applications in diverse fields, including medicine, electronics, and environmental remediation. The findings presented here underscore their potential as versatile antiviral agents, providing a promising avenue for further in vitro and in vivo research to explore their efficacy in inhibiting the replication of the SARS-CoV-2 virus.
Author Contributions
Conceptualization, I.Z.; methodology, I.Z.; software, I.Z.; writing, I.Z.; validation, L.B.; supervision, L.B. All authors have read and agreed to the published version of the manuscript.
Funding
This research received no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest
The authors declare no conflict of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).