A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication
2.2. AlN Piezoelectric Material
3. Results and Discussions
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Kobayashi, T.; Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. Appl. Phys. Lett. 2015, 106, 013501. [Google Scholar] [CrossRef]
- Yipeng, L.; Horsely, D.A. Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers. J. Microelectromech. Syst. 2015, 24, 1142–1149. [Google Scholar]
- Wang, M.; Zhou, Y.; Randles, A. Enhancement of the Transmission of Piezoelectric Micromachined Ultrasonic Transducer with an Isolation Trench. J. Microelectromech. Syst. 2016, 25, 691–700. [Google Scholar] [CrossRef]
- Aydemir, A. Deep-Trench RIE Optimization for High Performance MEMS Microsensors. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2007. [Google Scholar]
- Yang, Y.; Tian, H.; Wang, Y.-F.; Shu, Y.; Zhou, C.-J.; Sun, H.; Zhang, C.-H.; Chen, H.; Ren, T.-L. An Ultra-High Element Density pMUT Array with Low Crosstalk for 3-D Medical Imaging. Sensors 2013, 13, 9624–9634. [Google Scholar] [CrossRef] [PubMed]
- Soedel, W. Vibration of Shells and Membranes under the Influence of Initial Stresses. In Vibration of Shells and Plates, 3rd ed.; Faulkner, L.L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 301–318. [Google Scholar]
- Kino, G.S. Wave Propagation with Finite Exciting Source. In Acoustic Waves: Devicesm Imaging, and Analog Signal Processing; Simon & Schuster: New York, NY, USA, 1987; pp. 154–163. [Google Scholar]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Radiation and reception of acoustic waves. In Fundamental of Acoustics, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 171–184. [Google Scholar]
pMUT Element | Diameter Size |
---|---|
pMUT1 | 190 µm |
pMUT2 | 220 µm |
pMUT3 | 250 µm |
pMUT4 | 300 µm |
pMUT5 | 350 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghpour, S.; Pobedinskas, P.; Haenen, K.; Puers, R. A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications. Proceedings 2017, 1, 364. https://doi.org/10.3390/proceedings1040364
Sadeghpour S, Pobedinskas P, Haenen K, Puers R. A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications. Proceedings. 2017; 1(4):364. https://doi.org/10.3390/proceedings1040364
Chicago/Turabian StyleSadeghpour, Sina, Paulius Pobedinskas, Ken Haenen, and Robert Puers. 2017. "A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications" Proceedings 1, no. 4: 364. https://doi.org/10.3390/proceedings1040364
APA StyleSadeghpour, S., Pobedinskas, P., Haenen, K., & Puers, R. (2017). A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications. Proceedings, 1(4), 364. https://doi.org/10.3390/proceedings1040364