Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies
Abstract
1. Introduction
2. Study Selection Criteria and Bibliometric Analysis
3. Nitrogen Pollution Pathways and Drivers in China
3.1. Effects on Water Quality
3.2. Impact of Harmful Algal Blooms
4. Socio-Economic Consequences and Human Health Risks of Nitrogen Eutrophication in China
4.1. Agricultural Practices: Reducing Nitrogen Losses from Farms
4.2. Wastewater Management: Cleaning Up Urban and Industrial Pollution
5. Case Studies: Lessons from Lake Dianchi and Shenzhen Bay
6. Strengthening Policies and Community Engagement to Address Nitrogen Pollution
7. Future Considerations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yao, X.; Zhang, Y.; Zhang, L.; Zhou, Y. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. J. Environ. Sci. 2018, 66, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Tang, J.; Feng, L.; Olin, S.; Schurgers, G. Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China. Biogeosciences 2023, 20, 1635–1648. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650 Pt 1, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, G.; Yang, W.; Peng, X.; Liu, H.; Li, H.; Li, W. Dominant Contribution of a Lake’s Internal Pollution to Eutrophication During Rapid Urbanization. Bull. Environ. Contam. Toxicol. 2021, 107, 904–910. [Google Scholar] [CrossRef]
- Liu, X.; Beusen, A.H.W.; Beek, L.P.H.V.; Mogollon, J.M.; Ran, X.; Bouwman, A.F. Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea. Water Res. 2018, 142, 246–255. [Google Scholar] [CrossRef]
- Liu, X.; Beusen, A.H.W.; Grinsven, H.J.M.v.; Wang, J.; Hoek, W.J.v.; Ran, X.; Mogollón, J.M.; Bouwman, A.F. Impact of groundwater nitrogen legacy on water quality. Nat. Sustain. 2024, 7, 891–900. [Google Scholar] [CrossRef]
- Coggins, S.; McDonald, A.J.; Silv, J.V.; Urfels, A.; Nayak, H.S.; Sherpa, S.R.; Jat, M.L.; Krupnik, T.; Kumar, V.; Sapkota, H.S.J.T.B.; et al. Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia. Nat. Sustain. 2025, 8, 22–33. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Feng, G.; Li, X.; Zhu, L.; Liu, S.; Coulter, J.A.; Gao, Q. Integrated Soil–Crop System Management with Organic Fertilizer Achieves Sustainable High Maize Yield and Nitrogen Use Efficiency in Northeast China Based on an 11-Year Field Study. Agronomy 2020, 10, 1078. [Google Scholar] [CrossRef]
- Deng, O.; Wang, S.; Ran, J.; Huang, S.; Zhang, X.; Duan, J.; Zhang, L.; Xia, Y.; Reis, S.; Xu, J.; et al. Managing urban development could halve nitrogen pollution in China. Nat. Commun. 2024, 15, 401. [Google Scholar] [CrossRef]
- Cen, X.; Li, M.; Xu, L.; Zhu, J.; He, N. Atmospheric N Deposition Significantly Enhanced Soil N2O Emission from Eastern China Forests. Glob. Biogeochem. Cycles 2022, 36, e2021GB007289. [Google Scholar] [CrossRef]
- Ji, P.; Chen, J.; Chen, R.; Liu, J.; Yu, C.; Chen, F. Nitrogen and phosphorus trends in lake sediments ofChina may diverge. Nat. Commun. 2024, 15, 2644. [Google Scholar] [CrossRef]
- Liang, G.; Sun, P.; Waring, B.G. Nitrogen agronomic efficiency under nitrogen fertilization does not change over time in the long term: Evidence from 477 global studies. Soil Tillage Res. 2022, 223, 105468. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Xia, J.; Zhang, S.; Hu, S. Changes in the water environment and its major driving factors in Poyang Lake from 2016 to 2019, China. Environ. Sci. Pollut. Res. 2023, 30, 3182–3196. [Google Scholar] [CrossRef]
- Wu, R.; Liu, Y.; Zhang, S.; Shi, X.; Zhao, S.; Lu, J.; Kang, X.; Wang, S.; Wu, Y.; Arvola, L. Characterization of nitrogen and phosphorus at the ice-water-sediment interface and the effect of their migration on overlying water quality in Daihai Lake (China) during the freezing period. Sci. Total Environ. 2023, 893, 164863. [Google Scholar] [CrossRef]
- Szalińska, E.; Jarosińska, E.; Orlińska-Woźniak, P.; Jakusik, E.; Warzecha, W.; Ogar, W.; Wilk, P. Total nitrogen and phosphorus loads in surface runoff from urban land use (city of Lublin) under climate change. Environ. Sci. Pollut. Res. 2024, 31, 48135–48153. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Farnsley, S.E.; LeCleir, G.R.; Layton, A.C.; Satchwell, M.F.; DeBruyn, J.M.; Boyer, G.L.; Zhu, G.; Paerl, H.W. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 2011, 10, 207–215. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiao, P.; Liu, Y.; Wang, J.; Li, R. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes. Harmful Algae 2017, 64, 42–50. [Google Scholar] [CrossRef]
- Tavakoli, Y.; Mohammadipanah, F.; Te, S.H.; You, L.; Gin, K.Y. Biodiversity, phylogeny and toxin production profile of cyanobacterial strains isolated from lake Latyan in Iran. Harmful Algae 2021, 106, 102054. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Zhao, Y.; Wang, L.; Chen, Y.; Yang, L. Spatiotemporal heterogeneities and driving factors of water quality and trophic state of a typical urban shallow lake (Taihu, China). Environ. Sci. Pollut. Res. 2022, 29, 53831–53843. [Google Scholar] [CrossRef]
- Li, X.D.; Chen, Y.H.; Liu, C.; Hong, J.; Deng, H.; Yu, D.J. Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China. Microb. Ecol. 2020, 80, 1–13. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Zhang, M.; Lin, K.; Wang, Z.; Liu, L. Seasonal responses of microbial communities to water quality variations and interaction of eutrophication risk in Gehu Lake. Sci. Total Environ. 2024, 955, 177199. [Google Scholar] [CrossRef]
- Yan, X.; Xia, Y.; Ti, C.; Shan, J.; Wu, Y.; Yan, X. Thirty years of experience in water pollution control in Taihu Lake: A review. Sci. Total Environ. 2024, 914, 169821. [Google Scholar] [CrossRef]
- Bai, Z.; Fan, X.; Jin, X.; Zhao, Z.; Wu, Y.; Oenema, O.; Velthof, G.; Hu, C.; Ma, L. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nat. Food 2022, 3, 152–160. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Liu, S.; Jiang, Z.; Arbi, I.; Huang, X.; Macreadie, P.I. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes. Atmos. Environ. 2018, 182, 75–86. [Google Scholar] [CrossRef]
- Balestrini, R.; Di’emoz, H.; Freppaz, M.; Delconte, C.A.; Caschetto, M.; Matiato, I. Nitrogen atmospheric deposition in a high-altitude Alpine environment: A chemical and isotopic approach to investigate the influence from anthropized areas. Atmos. Environ. 2024, 328, 120513. [Google Scholar] [CrossRef]
- Vries, W.d. Impacts of nitrogen emissions on ecosystems and human health: A mini review. Curr. Opin. Environ. Sci. Health 2021, 21, 100249. [Google Scholar] [CrossRef]
- Isaza, D.F.G.; Cramp, R.L.; Franklin, C.E. Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa. Environ. Pollut. 2020, 261, 114091. [Google Scholar] [CrossRef]
- Shaban, J.; Al-Najar, H.; Kocadal, K.; Almghari, K.; Saygi, S. The Effect of Nitrate-Contaminated Drinking Water and Vegetables on the Prevalence of Acquired Methemoglobinemia in Beit Lahia City in Palestine. Water 2023, 15, 1989. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, T.; Yin, Y.; Ying, H.; Cui, Z.; Zhang, F. Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production. Agronomy 2021, 11, 557. [Google Scholar] [CrossRef]
- Lai, Q.; Ma, J.; Du, W.; Luo, Y.; Ji, D.; He, F. Analysis of the Source Tracing and Pollution Characteristics of Rainfall Runoff in Adjacent New and Old Urban Areas. Water 2023, 15, 3018. [Google Scholar] [CrossRef]
- Riza, M.; Ehsan, M.N.; Pervez, M.N.; Khyum, M.M.O.; Cai, Y.; Naddeo, V. Control of eutrophication in aquatic ecosystems by sustainable dredging: Effectiveness, environmental impacts, and implications. Case Stud. Chem. Environ. Eng. 2023, 7, 100297. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, Y.; Gu, X.; Zheng, M.; Fan, Z.; Luo, D.; Luo, K.; Liu, B. Spatiotemporal variation characteristics of livestock manure nutrient in the soil environment of the Yangtze River Delta from 1980 to 2018. Sci. Rep. 2022, 12, 7353. [Google Scholar] [CrossRef]
- Edwards, T.M.; Puglis, H.J.; Kent, D.B.; Jonathan Lopex Duran, L.M.B.; Farag, A.M. Ammonia and aquatic ecosystems—A review of global sources, biogeochemical cycling, and effects on fish. Sci. Total Environ. 2024, 907, 167911. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y.; Zhu, G.; Gao, G. Eutrophication control of large shallow lakes in China. Sci. Total Environ. 2023, 881, 163494. [Google Scholar] [CrossRef]
- FAOSTAT. Fertilizer by Nutrient—Nitrogen Fertilizers (N Total Nutrients)—China; Food and Agriculture Organization of the United Nations: Rome, Italy, 2025. [Google Scholar]
- Yu, Z.; Liu, J.; Kattel, G. Historical nitrogen fertilizer use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Xie, T.; Song, Z.; Bai, S.; Zhang, X.; Wang, C. Seasonal Variations and Drivers of Total Nitrogen and Phosphorus in China’s Surface Waters. Water 2025, 17, 512. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.; Li, X.; Luo, H.; Xu, W.; Xu, X.; Wang, H.; Chen, Y. Analysis of Nitrogen and Phosphorus Pollution in Shenzhen Bay over the Past 40 Years. Water 2024, 16, 3002. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Z. China sewage treatment engineering issues assessment. J. Clean. Prod. 2022, 377, 134391. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef]
- Li, J.; Zeng, W.; Wan, X. Management and Reduction Techniques Strategies of Ammonia Emission in Agricultural Sectors in China. Agronomy 2023, 13, 2555. [Google Scholar] [CrossRef]
- Liu, X.; Cui, K.; Hsieh, Y.-K.; Wang, Y.-F.; Wang, R. Study on Air Quality Index, Atmospheric Pollutants and Dry Deposition of PCDD/Fs in the Ambient Air near Southwest China. Aerosol Air Qual. Res. 2022, 22, 220160. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Q.; Sun, Y.; Jian, Y.; Zhou, F. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002–2018. Environ. Pollut. 2021, 288, 117826. [Google Scholar] [CrossRef]
- Tian, D.; Du, E.; Jiang, L.; Ma, S.; Zeng, W.; Zou, A.; Feng, C.; Xu, L.; Xing, A.; Wang, W.; et al. Responses of forest ecosystems to increasing N deposition in China: A critical review. Environ. Pollut. 2018, 243, 75–86. [Google Scholar] [CrossRef]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- Qin, B.; Deng, J.; Shi, K.; Wang, J.; Brookes, J.; Zhou, J.; Zhang, Y.; Zhu, G.; Paerl, H.W.; Wu, L. Extreme Climate Anomalies Enhancing Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Water Resour. Res. 2021, 57, e2020WR029371. [Google Scholar] [CrossRef]
- Oh, J.-W.; Pushparaj, S.S.C.; Muthu, M.; Gopal, J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. Plants 2023, 12, 3936. [Google Scholar] [CrossRef]
- Yang, F.; Wang, H.; Bouwman, A.F.; Beusen, A.H.W.; Liu, X.; Wang, J.; Yu, Z.; Yao, Q. Nitrogen from agriculture and temperature as the major drivers of deoxygenation in the central Bohai Sea. Sci. Total Environ. 2023, 893, 164614. [Google Scholar] [CrossRef]
- Liang, W.; Wang, Y.; Mu, J.; Wu, N.; Wang, J.; Liu, S. Nutrient changes in the Bohai Sea over the past two decades. Sci. Total Environ. 2023, 903, 166696. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, H.; Han, R.; Li, D.; Zhang, L. Identifying the Mechanisms behind the Positive Feedback Loop between Nitrogen Cycling and Algal Blooms in a Shallow Eutrophic Lake. Water 2021, 13, 524. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Wang, H.; Hu, X.; Yang, F.; Tang, M.; Zhang, M.; Zhong, J. Internal nitrogen and phosphorus loading in a seasonally stratified reservoir: Implications for eutrophication management of deep-water ecosystems. J. Environ. Manag. 2022, 319, 115681. [Google Scholar] [CrossRef]
- Yang, C.; Yang, P.; Geng, J.; Yin, H.; Chen, K. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Li, H.; Zhu, Y.; He, X.; Liao, Y.; Jiang, Z.; Shou, L.; Wang, Z.; Jennerjahn, T.C.; et al. Coastal eutrophication driven by long-distance transport of large river nutrient loads, the case of Xiangshan Bay, China. Sci. Total Environ. 2024, 912, 168875. [Google Scholar] [CrossRef]
- Gao, B.; Xu, Y.; Lin, Z.; Lu, M.; Wang, Q. Temporal and Spatial Characteristics of River Water Quality and Its Influence Factors in the TAIHU Basin Plains, Lower Yangtze River, China. Water 2022, 14, 1654. [Google Scholar] [CrossRef]
- Peng, J.; Chen, J.; Liu, S.; Liu, T.; Deng, F.; Fan, Y.; Maeyer, P.D. Dynamics of the risk of algal blooms induced by surface water temperature in an alpine eutrophic lake under climate warming: Insights from Lake Dianchi. J. Hydrol. 2024, 643, 131949. [Google Scholar] [CrossRef]
- Shang, W.; Jin, S.; He, Y.; Zhang, Y.; Li, J. Spatial–Temporal Variations of Total Nitrogen and Phosphorus in Poyang, Dongting and Taihu Lakes from Landsat-8 Data. Water 2021, 13, 1704. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Hou, X. Algal Blooms in Lakes in China Over the Past Two Decades: Patterns, Trends, and Drivers. Water Resour. Res. 2023, 59, e2022WR033340. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Peng, J. The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: A national-scale characterization. Water Res. 2020, 181, 115902. [Google Scholar] [CrossRef]
- Zhang, S.; Arhonditsis, G.B.; Ji, Y.; Bryan, B.A.; Peng, J.; Zhang, Y.; Gao, J.; Zhang, J.; Cho, K.H.; Huang, J. Climate change promotes harmful algal blooms in China’s lakes and reservoirs despite significant nutrient control efforts. Water Res. 2025, 277, 123307. [Google Scholar] [CrossRef]
- Lan, J.; Liu, P.; Hu, X.; Zhu, S. Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment. Water 2024, 16, 2525. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Qin, W.; Guo, Y.; Wang, C.; Li, D.; Wang, Y. Effects of nitrogen and phosphorus on chlorophyll a in lakes of China: A meta-analysis. Environ. Res. Lett. 2022, 17, 074038. [Google Scholar] [CrossRef]
- Wang, J.-H.; Wang, Y.-N.; Dao, G.-H.; Du, J.-S.; Han, Y.-P.; Hu, H.-Y. Decade-long meteorological and water quality dynamics of northern Lake Dianchi and recommendations on algal bloom mitigation via key influencing factors identification. Ecol. Indic. 2020, 115, 106425. [Google Scholar] [CrossRef]
- Wang, J.; Bouwman, A.F.; Liu, X.; Beusen, A.H.W.; Dingenen, R.V.; Dentener, F.; Yao, Y.; Glibert, P.M.; Ran, X.; Yao, Q.; et al. Harmful Algal Blooms in Chinese Coastal Waters Will Persist Due to Perturbed Nutrient Ratios. Environ. Sci. Technol. Lett. 2021, 8, 276–284. [Google Scholar] [CrossRef]
- Richards, Z.T.; Haines, L.; Ross, C.; Preston, S.; Matthews, T.; Terriaca, A.; Black, E.; Lewis, Y.; Mannolini, J.; Dean, P.; et al. Deoxygenation following coral spawning and low-level thermal stress trigger mass coral mortality at Coral Bay, Ningaloo Reef. Coral Reefs 2024, 43, 443–453. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.U.; Rahman, M.; Naher, S.; Shahed, Z.H.; Ali, M.M.; Islam, A.R.M.T. Oxygen declination in the coastal ocean over the twenty-first century: Driving forces, trends, and impacts. Case Stud. Chem. Environ. Eng. 2024, 9, 100621. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Tan, Y.; Yang, G. Quantifying and optimizing agroecosystem services in China’s Taihu Lake Basin. J. Environ. Manag. 2021, 277, 111440. [Google Scholar] [CrossRef]
- Reza, M.N.; Lee, K.-H.; Karim, M.R.; Haque, M.A.; Bicamumakuba, E.; Dey, P.K.; Jang, Y.Y.; Chung, S.-O. Trends of Soil and Solution Nutrient Sensing for Open Field and Hydroponic Cultivation in Facilitated Smart Agriculture. Sensors 2025, 25, 453. [Google Scholar] [CrossRef]
- Wei, Q.; Wei, Q.; Xu, J.; Liu, Y.; Wang, D.; Chen, S.; Qian, W.; He, M.; Chen, P.; Zhou, X.; et al. Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives. Agric. Water Manag. 2024, 296, 108791. [Google Scholar] [CrossRef]
- Guo, H.; Li, S. A Review of Drip Irrigation’s Effect on Water, Carbon Fluxes, and Crop Growth in Farmland. Water 2024, 16, 2206. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Yang, A.; Luo, S.; Xu, Y.; Zhang, P.; Sun, Z.; Hu, K.; Li, M. Optimization of Irrigation and Fertilization in Maize–Soybean System Based on Coupled Water–Carbon–Nitrogen Interactions. Agronomy 2024, 15, 41. [Google Scholar] [CrossRef]
- Valkama, E.; Usva, K.; Saarinen, M.; Uusi-Kämppä, J. A Meta-Analysis on Nitrogen Retention by Buffer Zones. J. Environ. Qual. 2018, 48, 270–279. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Kroeze, C.; Chen, X.; Ma, L.; Chen, X.; Shi, X.; Strokal, M. Nitrogen in the Yangtze River Basin: Pollution Reduction through Coupling Crop and Livestock Production. Environ. Sci. Technol. 2022, 56, 17591–17603. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Guo, D.; Zou, D. Development application of rural domestic sewage treatment project in cold areas of Northeast China: Opportunities and challenges. J. Water Process Eng. 2023, 56, 104326. [Google Scholar] [CrossRef]
- Harder, R.; Wielemaker, R.; Larsen, T.A.; Zeeman, G.; Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 2019, 49, 695–743. [Google Scholar] [CrossRef]
- Simha, P.; Ganesapillai, M. Ecological Sanitation and nutrient recovery from human urine: How far have we come? A review. Sustain. Environ. Res. 2017, 27, 107–116. [Google Scholar] [CrossRef]
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of pharmaceutical effluents on aquatic ecosystems. Sci. Afr. 2022, 17, e01288. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Ahmed, R.S.; Abuarab, M.E.; Ibrahim, M.M.; Baioumy, M.; Mokhta, A. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. Chemosphere 2023, 318, 137872. [Google Scholar] [CrossRef]
- Jalali, P.; Rabotyagov, S. Quantifying cumulative effectiveness of green stormwater infrastructure in improving water quality. Sci. Total Environ. 2020, 731, 138953. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Pan, D.; Yang, S.X.; Gharabaghi, B. Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management. Remote Sens. 2024, 16, 4196. [Google Scholar] [CrossRef]
- Li, F.; Ren, J.; Wimmer, S.; Yin, C.; Li, Z.; Xu, C. Incentive mechanism for promoting farmers to plant green manure in China. J. Clean. Prod. 2020, 267, 122197. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Chen, X.; Ju, X.; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M.; et al. Chapter one—Integrated Nutrient Management for Food Security and Environmental Quality in China. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2012; Volume 116, pp. 1–40. [Google Scholar]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Yao, S.; Chen, C.; He, M.; Cui, Z.; Mo, K.; Pang, R.; Chen, Q. Land use as an important indicator for water quality prediction in a region under rapid urbanization. Ecol. Indic. 2023, 146, 109768. [Google Scholar] [CrossRef]
- Murphy, R.R.; Keisman, J.; Harcum, J.; Karrh, R.R.; Lane, M.; Perry, E.S.; Zhang, Q. Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management. Environ. Sci. Technol. 2022, 56, 260–270. [Google Scholar] [CrossRef]
- Easton, Z.M.; Hanson, J.; Bock, E.; Asfaw, B.W. A Review of Chesapeake Bay Climate Change: Potential Impacts on Watershed Hydrology and Nutrient and Sediment Cycling and Export. J. Am. Water Resour. Assoc. 2024, 61, e70030. [Google Scholar] [CrossRef]
- Some, S. Unlocking synergies and managing trade-offs: How climate actions in Indian agriculture support the Sustainable Development Goals. Discov. Sustain. 2024, 5, 207. [Google Scholar] [CrossRef]
- Móring, A.; Hooda, S.; Raghuram, N.; Adhya, T.K.; Ahmad, A.; Bandyopadhyay, S.K.; Tina Barsby6, G.B.; Bentley, A.R.; Bhatia, A.; Dragosits, U.; et al. Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Front. Sustain. Food Syst. 2021, 5, 505347. [Google Scholar] [CrossRef]
- Ramappa, K.B.; Jadhav, V.; Manjunatha, A.V. A benchmark study on economic impact of Neem Coated Urea on Indian agriculture. Sci. Rep. 2022, 12, 9082. [Google Scholar] [CrossRef]
- Ptak, E.N.; Graversgaard, M.; Refsgaard, J.C.; Dalgaard, T. Nitrate Management Discourses in Poland and Denmark—Laggards or Leaders in Water Quality Protection? Water 2020, 12, 2371. [Google Scholar] [CrossRef]
- Severini, E.; Bartoli, M.; Pinardi, M.; Celico, F. Short-Term Effects of the EU Nitrate Directive Reintroduction: Reduced N Loads to River from an Alluvial Aquifer in Northern Italy. Hydrology 2022, 9, 44. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, J.; Zhang, S.; Chen, Q.; Fan, H.; Cao, C.; Zhang, Y.; Yang, Y.; Luo, J.; Yao, Y. Groundwater quality evolution across China. Nat. Commun. 2025, 16, 2522. [Google Scholar] [CrossRef]
- EU. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. Eur. Union J. 1991, L 375, 1–8. [Google Scholar]
- Walsh, R.; Ward, A.S. An overview of the evolving jurisdictional scope of the U.S. Clean Water Act for hydrologists. WIREs Water 2022, 9, e1603. [Google Scholar] [CrossRef]
- Basche, A.; Tully, K.; Álvarez-Berríos, N.L.; Reyes, J.; Lengnick, L.; Brown, T.; Moore, J.M.; Schattman, R.E.; Johnson, L.K.; Roesch-McNally, G. Evaluating the Untapped Potential of U.S. Conservation Investments to Improve Soil and Environmental Health. Front. Sustain. Food Syst. 2020, 4, 547876. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Singh, B. India’s fertilizer policies: Implications for food security, environmental sustainability, and climate change. Reg. Environ. Change 2025, 25, 63. [Google Scholar] [CrossRef]
- Que, Z.; Wang, X.; Liu, T.; Wu, S.; He, Y.; Zhou, T.; Yu, L.; Qing, Z.; Chen, H.; Yuan, X. Watershed land use change indirectly dominated the spatial variations of CH4 and N2O emissions from two small suburban rivers. J. Hydrol. 2023, 619, 129357. [Google Scholar] [CrossRef]
Region | Legacy N Store (kg N ha−1) | Annual Release Rate (%) | Estimated Persistence (Years) | Reference |
---|---|---|---|---|
North China Plain | 120 kg N ha−1 | 5% | ~20 | [6] |
Yangtze Basin | 90 kg N ha−1 | 4% | ~25 | [9] |
Bohai Coastal Plain | 100 kg N ha−1 | 6% | ~15 | [10] |
Database | Search Query | Initial Records Retrieved | Final Records Included | Notes |
---|---|---|---|---|
Web of Science | TS = (“nitrogen eutrophication” OR “nitrogen pollution” OR “reactive nitrogen” OR “nitrogen loading”) AND TS = (“harmful algal blooms” OR “water quality” OR “nutrient pollution” OR “aquatic ecosystems” OR “lakes” OR “rivers” OR “coastal waters”) | 1453 | 285 | Limited to 2000–2025; China-focused research articles only |
Scopus | TITLE-ABS-KEY(“nitrogen eutrophication” OR “nitrogen pollution” OR “reactive nitrogen” OR “nitrogen loading”) AND TITLE-ABS-KEY(“harmful algal blooms” OR “water quality” OR “nutrient pollution” OR “aquatic ecosystems” OR “lakes” OR “rivers” OR “coastal waters”) | 2343 | 959 | Limited to 2000–2025; China-focused research articles only |
Source | Description | Impact |
---|---|---|
Agricultural Runoff | Overuse of synthetic fertilizers and improper livestock waste management. | Eutrophication, algal blooms, oxygen depletion in aquatic ecosystems, and groundwater contamination. |
Animal Manure Mismanagement | Excessive application of manure as fertilizer, particularly in rural areas. | Releases ammonia and organic nitrogen, exacerbating water pollution. |
Urban Wastewater | Untreated or inadequately treated sewage from households and businesses. | Fuels eutrophication, contaminates rivers and lakes with nitrogen-rich organic matter. |
Industrial Emissions | Release of nitrogen-containing pollutants from factories (e.g., coal combustion, chemical manufacturing). | Acid rain, smog, and atmospheric deposition are affecting soil and water. |
Atmospheric Deposition | Nitrogen oxides (NOX) and ammonia (NH3) emissions settle onto land and water through precipitation. | Alters soil chemistry, harms biodiversity, causes soil acidification, and nutrient imbalances. |
Year Range | Annual Use (Million Tonnes) | Intensity (kg/ha) | Key Trend/Policy Impact | Reference |
---|---|---|---|---|
2000–2005 | 22.14–26.64 | 180–200 | Rapid rise post-Green Revolution | FAOSTAT (2025) [37] |
2006–2015 | 27.24–30.98 | 200–250 | Peak due to intensification | FAOSTAT (2025) [37] |
2016–2023 | 24.55–30.39 | 190–220 | Decline via “Zero Growth” | FAOSTAT (2025) [37] |
2024–2025 | ~24.30–24.10 (est.) | ~180–200 | Continued decline (sustainability focus) |
Fate Pathway | Approx. Proportion of Applied N | Environmental Impact | Reference |
---|---|---|---|
Crop uptake | 40–60% | Supports yield | [16] |
Surface runoff | 20–30% | Eutrophication of downstream waters | [2] |
Ammonia volatilization | 10–20% | Particulate Matter formation, regional deposition | [14] |
Soil denitrification | 5–15% | Emission of N2O (a potent greenhouse gas) | [10] |
Policy/Case Study | Outcomes & Metrics | Challenges | Lessons Learned | References |
---|---|---|---|---|
Zero Growth Fertilizer Initiative (2015-) | Provinces such as Heilongjiang and Shandong achieved 5–10% reductions in total fertilizer applied with no yield loss. | Limited uptake by smallholders; uneven enforcement in remote counties. | Clear targets + financial incentives drive adoption-but extension support must reach smallholders. | [86,88] |
“Water Ten”National Action Plan (2015-) | 15% average reduction in nitrogen + phosphorus loads in key river basins by 2020; >80% of major WWTPs upgraded. | Persistent gaps in rural sewage networks; local governments under-budgeted for long-term monitoring. | Multi-sector coordination (agriculture, industry, urban) succeeds with both penalties and subsidies, but rural roll-out lags. | [41,88] |
Lake Taihu Restoration (Integrated Watershed Mgmt.) | Peak-season cyanobacterial blooms down ~30% (2015–2022); dissolved O2 recoveries of ~1 mg/L in summer. | Upstream non-point agricultural runoff remained high, conflicting mandates among the five prefecture governments. | Combining dredging with buffer-zone reforestation yields better results than either alone. | [23,52,89] |
U.S. Clean Water Act (CWA)—Chesapeake Bay TMDL Program | By 2022, nitrogen loads had decreased by approximately 25% compared to pre-TMDL levels; improvements in water clarity and aquatic habitat recovery were documented in tributaries like the Patuxent River and James River. | Coordination challenges across six states and D.C.; funding disparities and political will vary by jurisdiction. | Science-based regulatory enforcement combined with multi-jurisdictional cooperation, adaptive management, and public participation is effective; binding pollution caps ensure accountability. | [90,91] |
India: Soil Health Card Scheme (SHCS) under NMSA/SM-SHF | Contributed improve nitrogen use efficiency and reduced ammonia volatilization; improved crop yields and reduced input costs for farmers in Punjab, Haryana, and Andhra Pradesh. | Disparities in implementation across states are due to differences in extension capacity, infrastructure, and farmer awareness. | Data-driven decision support tools (like SHCS and NCU) can be scaled effectively in smallholder-dominated systems; tailored nutrient recommendations improve efficiency and sustainability. | [92,93,94] |
EU Nitrates Directive (1991)—Denmark & Poland | Denmark initially met the 50 mg NO3/L standard by 2000, but later struggled; Poland remains non-compliant in many zones. | Denmark’s extremely high livestock density; Poland’s low social capital and financial constraints. | Buffer strips and livestock density caps can work, but require strong governance capacity and social buy-in. | [95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoregie, A.I.; Silini, M.O.E.; Wong, L.S.; Rajasekar, A. Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies. Nitrogen 2025, 6, 92. https://doi.org/10.3390/nitrogen6040092
Omoregie AI, Silini MOE, Wong LS, Rajasekar A. Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies. Nitrogen. 2025; 6(4):92. https://doi.org/10.3390/nitrogen6040092
Chicago/Turabian StyleOmoregie, Armstrong Ighodalo, Muhammad Oliver Ensor Silini, Lin Sze Wong, and Adharsh Rajasekar. 2025. "Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies" Nitrogen 6, no. 4: 92. https://doi.org/10.3390/nitrogen6040092
APA StyleOmoregie, A. I., Silini, M. O. E., Wong, L. S., & Rajasekar, A. (2025). Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies. Nitrogen, 6(4), 92. https://doi.org/10.3390/nitrogen6040092