Remote Screening of Nitrogen Uptake and Biomass Formation in Irrigated and Rainfed Wheat
Abstract
1. Introduction
2. Material and Method
2.1. Experimental Sites and N Fertilizer Treatments
2.2. Plant Samplings and Spectral Analysis
2.3. Statistics
3. Results
3.1. Crop Parameters During Vegetation
3.2. Relationship Between Crop Variables and Spectral Indices
3.3. Spectral Indices to Explain Crop Nitrogen Parameters
3.4. Neural Network Modelling to Estimate N Uptake
4. Discussion
4.1. Vegetation Indices and Wheat Traits
4.2. Neural Network Model Estimate for Nitrogen Uptake
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can Less Yield More? Is Reducing Nutrient Input into the Environment Compatible with Maintaining Crop Production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Franco, C.; Mejía, N.; Pedersen, S.M.; Gislum, R. Potential Impact of Learning Management Zones for Site-Specific N Fertilisation: A Case Study for Wheat Crops. Nitrogen 2022, 3, 387–403. [Google Scholar] [CrossRef]
- Li, X.; Ata-UI-Karim, S.T.; Li, Y.; Yuan, F.; Miao, Y.; Yoichiro, K.; Cheng, T.; Tang, L.; Tian, X.; Liu, X.; et al. Advances in the Estimations and Applications of Critical Nitrogen Dilution Curve and Nitrogen Nutrition Index of Major Cereal Crops. A Review. Comput. Electron. Agric. 2022, 197, 106998. [Google Scholar] [CrossRef]
- Fox, R.H.; Walthall, C.L. Crop Monitoring Technologies to Assess Nitrogen Status. In Nitrogen in Agricultural Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 647–674. ISBN 978-0-89118-191-0. [Google Scholar]
- Cammarano, D.; Fitzgerald, G.J.; Casa, R.; Basso, B. Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sens. 2014, 6, 2827–2844. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Heitholt, J.J.; Johnson, R.C.; Ferris, D.M. Stomatal Limitation to Carbon Dioxide Assimilation in Nitrogen and Drought-Stressed Wheat. Crop Sci. 1991, 31, 135–139. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A New Technique for Extracting the Red Edge Position from Hyperspectral Data: The Linear Extrapolation Method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote Sensing of Nitrogen and Lignin in Mediterranean Vegetation from AVIRIS Data: Decomposing Biochemical from Structural Signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Castellon, A.; Aizpurua, A. A First Approach to Determine If It Is Possible to Delineate In-Season N Fertilization Maps for Wheat Using NDVI Derived from Sentinel-2. Remote Sens. 2022, 14, 2872. [Google Scholar] [CrossRef]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. Wheat Leaf Traits Monitoring Based on Machine Learning Algorithms and High-Resolution Satellite Imagery. Ecol. Inform. 2023, 74, 101967. [Google Scholar] [CrossRef]
- Zhai, W.; Cheng, Q.; Duan, F.; Huang, X.; Chen, Z. Remote Sensing-Based Analysis of Yield and Water-Fertilizer Use Efficiency in Winter Wheat Management. Agric. Water Manag. 2025, 311, 109390. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Pancorbo, J.L.; Alonso-Ayuso, M.; Camino, C.; Raya-Sereno, M.D.; Zarco-Tejada, P.J.; Molina, I.; Gabriel, J.L.; Quemada, M. Airborne Hyperspectral and Sentinel Imagery to Quantify Winter Wheat Traits through Ensemble Modeling Approaches. Precis. Agric. 2023, 24, 1288–1311. [Google Scholar] [CrossRef]
- Dordas, C.A. Impact of Nitrogen Fertilization on Rosemary: Assessment of Physiological Traits, Vegetation Indices, and Environmental Resource Use Efficiency. Nitrogen 2025, 6, 33. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Li, F.; Li, D.; Elsayed, S.; Hu, Y.; Schmidhalter, U. Using Optimized Three-Band Spectral Indices to Assess Canopy N Uptake in Corn and Wheat. Eur. J. Agron. 2021, 127, 126286. [Google Scholar] [CrossRef]
- Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop. Agronomy 2022, 12, 2181. [Google Scholar] [CrossRef]
- Peñuelas, J.; Munné-Bosch, S.; Llusià, J.; Filella, I. Leaf Reflectance and Photo- and Antioxidant Protection in Field-Grown Summer-Stressed Phillyrea Angustifolia. Optical Signals of Oxidative Stress? New Phytol. 2004, 162, 115–124. [Google Scholar] [CrossRef]
- Klem, K.; Záhora, J.; Zemek, F.; Trunda, P.; Tůma, I.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Hanuš, J.; Vavříková, J.; et al. Interactive Effects of Water Deficit and Nitrogen Nutrition on Winter Wheat. Remote Sensing Methods for Their Detection. Agric. Water Manag. 2018, 210, 171–184. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations; MIT Press: Cambridge, MA, USA, 1987; pp. 318–362. ISBN 978-0-262-29140-8. [Google Scholar]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Tita, D.; Mahdi, K.; Devkota, K.P.; Devkota, M. Climate Change and Agronomic Management: Addressing Wheat Yield Gaps and Sustainability Challenges in the Mediterranean and MENA Regions. Agric. Syst. 2025, 224, 104242. [Google Scholar] [CrossRef]
- Phogat, V.; Šimůnek, J.; Petrie, P.; Pitt, T.; Filipović, V. Sustainability of a Rainfed Wheat Production System in Relation to Water and Nitrogen Dynamics in the Soil in the Eyre Peninsula, South Australia. Sustainability 2023, 15, 13370. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Deep Neural Network Algorithm for Estimating Maize Biomass Based on Simulated Sentinel 2A Vegetation Indices and Leaf Area Index. Crop J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Chen, W.; Yang, G.; Meng, Y.; Feng, H.; Li, H.; Tang, A.; Zhang, J.; Xu, X.; Yang, H.; Li, C.; et al. Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables. Remote Sens. 2024, 16, 4300. [Google Scholar] [CrossRef]
- Patel, M.K.; Ryu, D.; Western, A.W.; Suter, H.; Young, I.M. Which Multispectral Indices Robustly Measure Canopy Nitrogen across Seasons: Lessons from an Irrigated Pasture Crop. Comput. Electron. Agric. 2021, 182, 106000. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Sellami, M.H.; Albrizio, R.; Čolović, M.; Hamze, M.; Cantore, V.; Todorovic, M.; Piscitelli, L.; Stellacci, A.M. Selection of Hyperspectral Vegetation Indices for Monitoring Yield and Physiological Response in Sweet Maize under Different Water and Nitrogen Availability. Agronomy 2022, 12, 489. [Google Scholar] [CrossRef]
- Hnizil, O.; Baidani, A.; Khlila, I.; Nsarellah, N.; Laamari, A.; Amamou, A. Integrating NDVI, SPAD, and Canopy Temperature for Strategic Nitrogen and Seeding Rate Management to Enhance Yield, Quality, and Sustainability in Wheat Cultivation. Plants 2024, 13, 1574. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Lei, Y.; Antoniuk, V.; Hu, C. Evaluating Different Non-Destructive Estimation Methods for Winter Wheat (Triticum aestivum L.) Nitrogen Status Based on Canopy Spectrum. Remote Sens. 2020, 12, 95. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Zhao, Y.-R.; Li, X.-L.; Shao, Y.-N.; Liu, F.; He, Y. Hyperspectral Imaging for Mapping of Total Nitrogen Spatial Distribution in Pepper Plant. PLoS ONE 2014, 9, e116205. [Google Scholar] [CrossRef]
- Plénet, D.; Lemaire, G. Relationships between Dynamics of Nitrogen Uptake and Dry Matter Accumulation in Maize Crops. Determination of Critical N Concentration. Plant Soil 1999, 216, 65–82. [Google Scholar] [CrossRef]
- Pons, T.L.; Pearcy, R.W. Nitrogen Reallocation and Photosynthetic Acclimation in Response to Partial Shading in Soybean Plants. Physiol. Plant. 1994, 92, 636–644. [Google Scholar] [CrossRef]
- Charles-Edwards, D.A.; Stutzel, H.; Ferraris, R.; Beech, D.F. An Analysis of Spatial Variation in the Nitrogen Content of Leaves from Different Horizons Within a Canopy. Ann. Bot. 1987, 60, 421–426. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N Uptake and Distribution in Crops: An Agronomical and Ecophysiological Perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, C.; Wang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using an Active Sensor to Develop New Critical Nitrogen Dilution Curve for Winter Wheat. Sensors 2020, 20, 1577. [Google Scholar] [CrossRef]
- Yin, H.; Li, F.; Yang, H.; Di, Y.; Hu, Y.; Yu, K. Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sens. 2024, 16, 349. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely Estimating Aerial N Status of Phenologically Differing Winter Wheat Cultivars Grown in Contrasting Climatic and Geographic Zones in China and Germany. Field Crops Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Liaghat, S.; Ehsani, R.; Mansor, S.; Shafri, H.Z.M.; Meon, S.; Sankaran, S.; Azam, S.H.M.N. Early Detection of Basal Stem Rot Disease (Ganoderma) in Oil Palms Based on Hyperspectral Reflectance Data Using Pattern Recognition Algorithms. Int. J. Remote Sens. 2014, 35, 3427–3439. [Google Scholar] [CrossRef]
- Sun, H.; Feng, M.; Yang, W.; Bi, R.; Sun, J.; Zhao, C.; Xiao, L.; Wang, C.; Kubar, M.S. Monitoring Leaf Nitrogen Accumulation With Optimized Spectral Index in Winter Wheat Under Different Irrigation Regimes. Front. Plant Sci. 2022, 13, 913240. [Google Scholar] [CrossRef]
- Yang, H.; Yin, H.; Li, F.; Hu, Y.; Yu, K. Machine Learning Models Fed with Optimized Spectral Indices to Advance Crop Nitrogen Monitoring. Field Crops Res. 2023, 293, 108844. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Symposium on Significant Results Obtained from Earth Resources Technology Satellite-1, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gamon, J.A.; Solovchenko, A. Multiple drivers of seasonal change in PRI: Implications for photosynthesis 2. Stand level. Remote Sens. Environ. 2017, 190, 198–206. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground-Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; pp. 1–15. [Google Scholar]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
Urea (kg/da) | FBM (t/ha2) | DBM (t/ha2) | PH (cm) | %N | N Uptake (kg N/ha2) | |
---|---|---|---|---|---|---|
Irrigated | N0 | 47.5 ± 2.2 b | 17.8 ± 0.8 * | 108 ± 2.0 * | 0.84 ± 0.01 ab | 146 ± 20 * |
N6 | 54.6 ± 3.2 ab | 18.2 ± 1.2 | 106 ± 0.7 | 0.69 ± 0.07 b | 127 ± 19 | |
N11 | 48.8 ± 3.4 ab | 17.3 ± 0.6 | 107 ± 1.2 | 0.78 ± 0.09 ab | 139 ± 15 | |
N16 | 57.7 ± 1.1 a | 17.8 ± 0.4 | 108 ± 1.0 | 1.13 ± 0.16 a | 201 ± 31 | |
Rainfed | N0 | 13.8 ± 2.2 ab | 7.6 ± 1.4 * | 71.0 ± 1.0 c | 0.73 ± 0.13 * | 53.0 ± 10.7 * |
N2 | 13.7 ± 1.6 ab | 7.0 ± 0.7 | 79.7 ± 0.9 ab | 0.80 ± 0.03 | 56.0 ± 6.9 | |
N4 | 15.9 ± 1.0 a | 7.2 ± 0.4 | 78.5 ± 0.9 b | 0.52 ± 0.05 | 39.7 ± 9.3 | |
N5 | 13.6 ± 2.2 ab | 6.4 ± 0.9 | 80.8 ± 1.3 ab | 0.84 ± 0.27 | 43.3 ± 12.7 | |
N6 | 10.2 ± 0.2 b | 5.2 ± 0.1 | 82.3 ± 0.3 a | 0.76 ± 0.28 | 44.2 ± 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzer, M.H.; Kiray, F.; Ramazanoglu, E.; Cullu, M.A.; Mutlu, N.; Yilmaz, A.; Bol, R.; Senbayram, M. Remote Screening of Nitrogen Uptake and Biomass Formation in Irrigated and Rainfed Wheat. Nitrogen 2025, 6, 82. https://doi.org/10.3390/nitrogen6030082
Suzer MH, Kiray F, Ramazanoglu E, Cullu MA, Mutlu N, Yilmaz A, Bol R, Senbayram M. Remote Screening of Nitrogen Uptake and Biomass Formation in Irrigated and Rainfed Wheat. Nitrogen. 2025; 6(3):82. https://doi.org/10.3390/nitrogen6030082
Chicago/Turabian StyleSuzer, Mehmet Hadi, Ferit Kiray, Emrah Ramazanoglu, Mehmet Ali Cullu, Nusret Mutlu, Ahmet Yilmaz, Roland Bol, and Mehmet Senbayram. 2025. "Remote Screening of Nitrogen Uptake and Biomass Formation in Irrigated and Rainfed Wheat" Nitrogen 6, no. 3: 82. https://doi.org/10.3390/nitrogen6030082
APA StyleSuzer, M. H., Kiray, F., Ramazanoglu, E., Cullu, M. A., Mutlu, N., Yilmaz, A., Bol, R., & Senbayram, M. (2025). Remote Screening of Nitrogen Uptake and Biomass Formation in Irrigated and Rainfed Wheat. Nitrogen, 6(3), 82. https://doi.org/10.3390/nitrogen6030082