Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Properties of the Substrates and Pot Experiment Scheme
- A.
- Control (no fertilisation);
- B.
- Compost (sewage sludge 80% + sawdust 20%);
- C.
- Compost (garden and park waste 80% + sawdust 20%);
- D.
- Compost (sewage sludge 40% + garden and park waste 40% + sawdust 20%);
- E.
- Compost B with nitrogen fertilisation (30 N kg ha−1);
- F.
- Compost C with nitrogen fertilisation (30 N kg ha−1);
- G.
- Compost D with nitrogen fertilisation (30 N kg ha−1).
2.2. Chemical Composition of Soil
2.3. Pot Experiment Conditions
2.4. Measurement Soil–Plant Analysis Development
2.5. Biometric and Qualitative Measurements
2.6. Statistical Analyses
3. Results
3.1. Assessment of Soil Chemical Composition
3.2. Soil–Plant Analysis Development
3.3. Biometric Measurements of Plants and Yield Components
3.4. Protein Content in Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murphy, J.P.; Hoffman, L.A. The origin, history, and production of oat. Oat Sci. Technol. 1992, 33, 1–28. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, K.; Zhao, G.; Ma, X.; Jia, Z. Nitrogen fertilizer and sowing density affect flag leaf photosynthetic characteristics, grain yield, and yield components of oat in a semiarid region of northwest China. Agronomy 2022, 12, 2108. [Google Scholar] [CrossRef]
- Rodrigues, V.L.; Dessureault, P.L.; Marty, C.; Boucher, J.F.; Paré, M.C. Life cycle assessment of oat flake production with two end-of-life options for agro-industrial residue management. Sustainability 2023, 15, 5124. [Google Scholar] [CrossRef]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat proteins: A perspective on functional properties. LWT 2021, 152, 112307. [Google Scholar] [CrossRef]
- Condron, L.M.; Cameron, K.C.; Di, H.J.; Clough, T.J.; Forbes, E.A.; McLaren, R.G.; Silva, R.G. A comparison of soil and environmental quality under organic and conventional farming systems in New Zealand. N. Z. J. Agric. Res. 2000, 43, 443–466. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Das, R. Role of Integrated Nutrient Management on Oat: A Review. Int. J. Environ. Clim. Change 2022, 12, 66–79. [Google Scholar] [CrossRef]
- Bytyqi, B.; Kutasy, E. Leaf reflectance characteristics and yield of spring oat varieties as influenced by varietal divergences and nutritional supply. Acta Agrar. Debreceniensis 2023, 1, 29–34. [Google Scholar] [CrossRef]
- Mantai, R.D.; da Silva, J.A.; Carbonera, R.; Carvalho, I.R.; Lautenchleger, F.; Pereira, L.M. Technical and agronomic efficiency of nitrogen use on the yield and quality of oat grains. Rev. Bras. Eng. Agric. E Ambient. 2021, 25, 529–537. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, Z.; Xu, Y.; Lu, H.; Ji, Z.; Zhou, G. Different types of fertilizers enhanced salt resistance of oat and associated physiological mechanisms in saline soils. Agronomy 2022, 12, 317. [Google Scholar] [CrossRef]
- Svensson, K.; Odlare, M.; Pell, M. The fertilizing effect of compost and biogas residues from source separated household waste. J. Agric. Sci. 2004, 142, 461–467. [Google Scholar] [CrossRef]
- Gondek, K. Cadmium and lead content in oat and soil fertilized with composts. Pol. J. Nat. Sci. 2008, 23, 740–753. [Google Scholar] [CrossRef]
- Zorpas, A.A. Sewage sludge compost evaluation in oats, pepper and eggplant cultivation. Dyn. Soil Dyn. Plant-Glob. Sci. Books 2008, 2, 103–109. [Google Scholar]
- Gondek, K.; Filipek-Mazur, B.; Tlustoš, P. Heavy metal concentrations in oats and their availability in soil fertilized with composts. Electron. J. Pol. Agric. Univ. 2008, 11, 25. Available online: http://www.ejpau.media.pl/volume11/issue4/art-25.html (accessed on 6 May 2024).
- Hoehne, L.; de Lima, C.V.; Martini, M.C.; Altmayer, T.; Brietzke, D.T.; Finatto, J.; Gonçalves, T.E.; Granada, C.E. Addition of vermicompost to heavy metal-contaminated soil increases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water Air Soil Pollut. 2016, 227, 443. [Google Scholar] [CrossRef]
- Moser, R.G.; Bilck, A.P.; Yamashita, F.; Chies, L.G.; Presumido, P.H.; Meneses, R.M.; Michels, R.N.; Dal Bosco, T.C. Biodegradable material formulated with oat hulls in the composting process of household organic waste and tree pruning. Rev. AIDIS Ing. Y Cienc. Ambientales. Investig. Desarro. Y Práctica 2022, 15, 773–788. [Google Scholar] [CrossRef]
- Black, G.P.; Wong, L.; Young, T.M. Uptake of per-and polyfluorinated alkyl substances by dry farmed oats following the agricultural application of biosolids and compost. Environ. Sci. Process. Impacts 2025, 3, 661–669. [Google Scholar] [CrossRef]
- Douds, D.D., Jr.; Galvez, L.; Franke-Snyder, M.; Reider, C.; Drinkwater, L.E. Effect of compost addition and crop rotation point upon VAM fungi. Agric. Ecosyst. Environ. 1997, 65, 257–266. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Tserkezou, P. Wheat, barley and oat waste: A comparative and critical presentation of methods and potential uses of treated waste. Int. J. Food Sci. Technol. 2008, 43, 694–725. [Google Scholar] [CrossRef]
- Messiga, A.J.; Sharifi, M.; Munroe, S. Combinations of cover crop mixtures and bio-waste composts enhance biomass production and nutrients accumulation: A greenhouse study. Renew. Agric. Food Syst. 2016, 31, 507–515. [Google Scholar] [CrossRef]
- Kremper, R.; Juhász, E.K.; Novák, T.; Kincses, I.; Sándor, Z.; Tállai, M.; Béni, Á.; Szabó, A.; Szarvas, S.; Balla Kovács, A. Assessment of spring oat nitrogen supply based on plant sap nitrate concentration and SPAD values. Nitrogen 2025, 6, 19. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef] [PubMed]
- Helgason, B.L.; Larney, F.J.; Janzen, H.H.; Olson, B.M. Nitrogen dynamics in soil amended with composted cattle manure. Can. J. Soil Sci. 2007, 87, 43–50. [Google Scholar] [CrossRef]
- Carneiro, J.P.; Coutinho, J.; Trindade, H. Nitrate leaching from a maize× oats double-cropping forage system fertilized with organic residues under Mediterranean conditions. Agric. Ecosyst. Environ. 2012, 160, 29–39. [Google Scholar] [CrossRef]
- Mary, K.; Jha, S.K.; Luikham, E.; Joseph, R. Effect of integrated nutrient management on yield and economics of fodder oat (Avena sativa L.). Pharm. Innov. J. 2022, 11, 1211–1214. [Google Scholar] [CrossRef]
- Omondi, E.C.; Wagner, M.; Mukherjee, A.; Nichols, K. Long-term organic and conventional farming effects on nutrient density of oats. Renew. Agric. Food Syst. 2022, 37, 113–127. [Google Scholar] [CrossRef]
- Stanojković-Sebić, A.; Poštić, D.; Jovković, M.; Pivić, R. Yield, morphological traits, and physiological parameters of organic and pelleted Avena sativa L. Plants under different fertilization practices. Biol. Life Sci. Forum 2025, 41, 4. [Google Scholar] [CrossRef]
- Ochiai, S.; Iwabuchi, K.; Itoh, T.; Watanabe, T.; Osaki, M.; Taniguro, K. Effects of different feedstock type and carbonization temperature of biochar on oat growth and nitrogen uptake in coapplication with compost. J. Soil Sci. Plant Nutr. 2021, 21, 276–285. [Google Scholar] [CrossRef]
- Sullivan, D.; Bary, A.; Nartea, T.; Myrhe, E.; Cogger, C.; Fransen, S. Nitrogen availability seven years after a high-rate food waste compost application. Compos. Sci. Util. 2003, 11, 265–275. [Google Scholar] [CrossRef]
- Sullivan, D.; Bary, A.; Thomas, D.; Fransen, S.; Cogger, C. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil. Sci. Soc. Am. J. 2002, 66, 154–161. [Google Scholar] [CrossRef]
- Ross, C.L.; Mundschenk, E.; Wilken, V.; Sensel-Gunke, K.; Ellmer, F. Biowaste digestates: Influence of pelletization on nutrient release and early plant development of oats. Waste Biomass Valorization 2018, 9, 335–341. [Google Scholar] [CrossRef]
- Godara, A.S.; Gupta, U.S.; Singh, R. Effect of integrated nutrient management on herbage, dry fodder yield and quality of oat (Avena sativa L.). Forage Res. 2012, 38, 59–61. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. In BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Berlin/Braunschweig, Germany, 2018; p. 158. Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 20 March 2025).
- Rozporządzenie Ministra Środowiska z dnia 6 lutego 2015 r. w sprawie stosowania komunalnych osadów ściekowych. Dz.U. 2015 poz. 257 (in Polish). Regulation of the Minister of Environment of 6 February 2015 on the use of municipal sewage sludge. Journal of Laws 2015, item 257. Ministerstwo Šrodowiska. 2015. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20150000257 (accessed on 19 February 2025).
- IUSS Wosrking Group WRB World Reference Base for Soil Resources 2014, First Update. 2015. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/bcdecec7-f45f-4dc5-beb1-97022d29fab4/content (accessed on 20 May 2025).
- Horrocks, A.; Curtin, D.; Tregurtha, C.; Meenken, E. Municipal compost as a nutrient source for organic crop production in New Zealand. Agronomy 2016, 6, 35. [Google Scholar] [CrossRef]
- Zapałowska, A.; Jarecki, W. The impact of using different types of compost on the growth and yield of corn. Sustainability 2024, 16, 511. [Google Scholar] [CrossRef]
- Zapałowska, A.; Jarecki, W.; Skwiercz, A.; Malewski, T. Optimization of compost and peat mixture ratios for production of pepper seedlings. Int. J. Mol. Sci. 2025, 26, 442. [Google Scholar] [CrossRef]
- Hargreaves, J.; Adl, M.; Warman, P. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable waste in compost production: A Review of its economic potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W.; Putz, B. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur. J. Agron. 2005, 23, 305–314. [Google Scholar] [CrossRef]
- Zhang, J.; Blackmer, A.M.; Ellsworth, J.W.; Koehler, K.J. Sensitivity of chlorophyll meters for diagnosing nitrogen deficiencies of corn in production agriculture. Agron. J. 2008, 100, 543–550. [Google Scholar] [CrossRef]
- Rhezali, A.; Aissaoui, A.E. Feasibility study of using absolute SPAD values for standardized evaluation of corn nitrogen status. Nitrogen 2021, 2, 298–307. [Google Scholar] [CrossRef]
- Chen, L.; Dick, W.A.; Streeter, J.G.; Hoitink, H.A. Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 1998, 200, 139–147. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.; Yan, W.; Jiao, X. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef]
- Azeem, A.; Mai, W.; Gul, B.; Rasheed, A. Influence of soil amendment application on growth and yield of Hedysarum scoparium Fisch. et Mey and Avena sativa L. under saline conditions in dry-land regions. Plants 2025, 14, 855. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhao, L.; Gao, D.; Zhang, L.; Guo, L.; Ge, J.; Fan, Y.; Wang, Y.; Yan, Z. Study on optimal nitrogen application for different oat varieties in dryland regions of the loess plateau. Plants 2024, 13, 2956. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, K.; Liang, G.; Jia, Z.; Ju, Z.; Ma, X.; Zhou, Q. Comprehensive evaluation of low nitrogen tolerance in oat (Avena sativa L.) seedlings. Agronomy 2023, 13, 604. [Google Scholar] [CrossRef]
- Bibi, H.; Hameed, S.; Iqbal, M.; Al-Barty, A.; Darwish, H.; Khan, A.; Anwar, S.; Mian, I.A.; Ali, M.; Zia, A.; et al. Evaluation of exotic oat (Avena sativa L.) varieties for forage and grain yield in response to different levels of nitrogen and phosphorous. Peer J. 2021, 9, e12112. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, H.; Yang, Z.; Li, Y.; Shen, Y. Site-specific effects of fertilizer on hay and grain yields of oats: Evidence from large-scale field experiments. J. Sci. Food Agric. 2025, 105, 2429–2439. [Google Scholar] [CrossRef]
- Raja, W.; Hussain, A.; Sheikh, T.A.; Ul-Haq, A.; Allam, I.; Teli, N.A. Direct and residual effect of organic and chemical sources of nutrients on fodder sorghum-fodder oat cropping sequence. Indian. J. Agric. Res. 2019, 53, 108–111. [Google Scholar] [CrossRef]
- Jayanthi, C.; Malarvizhi, P.; Fazullah Khan, A.K.; Chinnusamy, C. Integrated nutrient management in forage oat (Avena sativa). Indian J. Agron. 2002, 47, 130–133. [Google Scholar] [CrossRef]
- Postnikov, D.A.; Merzlaya, G.E.; Fedulova, A.D. Effects of long-term fertilization systems on heavy metals residues in sod-podzolic soil and oats yield. Indian J. Agric. Res. 2021, 55, 329–334. [Google Scholar] [CrossRef]
- Kara, E.; Saltalı, K.; Özdilek, H. Potentiality of some agricultural residues and industrial wastes as manure. KSU J. Nat. Sci. 2011, 14, 18–27. [Google Scholar]
- Malhi, S.S.; Johnston, A.M.; Schoenau, J.J.; Wang, Z.L.; Vera, C.L. Seasonal biomass accumulation and nutrient uptake of wheat, barley and oat on a black chernozem soil in Saskatchewan. Can. J. Plant Sci. 2006, 86, 1005–1014. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Radziemska, M. Assessment of tri-and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013, 224, 1619. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Content of macronutrients in oat (Avena sativa L.) after remediation of soil polluted with cobalt. Environ. Monit. Assess. 2019, 191, 389. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L.; Evans, E.E.; Klossner, L.; Pagliari, P.H. Organic oat response to variety, seeding rate, and nutrient source and rate. Agronomy 2021, 11, 1418. [Google Scholar] [CrossRef]
- Jannoura, R.; Joergensen, R.G.; Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 2014, 52, 259–270. [Google Scholar] [CrossRef]
- Ciolek, A.; Makarska, E.; Wesolowski, M.; Cierpiala, R. Content of selected nutrients in wheat, barley, and oat grain from organic and conventional farming. J. Elem. 2012, 17, 181–189. [Google Scholar] [CrossRef]
- Sułek, A.; Cacak-Pietrzak, G.; Rózewicz, M.; Nieróbca, A.; Studnicki, M.; Podolska, G. Influence of production technology intensity on the yield and amino acid profile of the grain protein of different sowing oat (Avena sativa L.) cultivars. Agronomy 2025, 15, 803. [Google Scholar] [CrossRef]
- Pecio, A.; Bichonski, A. Nitrogen fertilization and fungicide application as elements of oat production. Pol. J. Environ. Stud. 2010, 19, 1297–1305. [Google Scholar]
- Ahmad, A.H.; Wahid, A.; Khalidg, F.; Fiaz, N.; Zamir, M.S.I. Impact of organic and inorganic sources of nitrogen and phosphorus fertilizers on growth, yield and quality of forage oat (Avena sativa L.). Cercet. Agron. în Mold. 2011, 44, 39–49. [Google Scholar] [CrossRef]
Parameter | Unit | B | C | D |
---|---|---|---|---|
pH in 1 mol/L KCl | - | 5.9 | 6.8 | 6.3 |
Dry matter | % | 30.2 | 44.1 | 36.7 |
N | % | 3.8 | 1.5 | 2.6 |
P2O5 | g⸱kg−1 d.m. | 9.8 | 2.6 | 6.7 |
K2O | 5.3 | 4.6 | 4.9 | |
Mg | 3.1 | 2.8 | 3.0 | |
Fe | mg⸱kg−1 d.m. | 4523.3 | 2369.4 | 3355.1 |
Zn | 246.3 | 74.9 | 161.2 | |
Mn | 282.8 | 68.3 | 172.6 | |
Cu | 68.3 | 44.8 | 56.2 |
Parameter | Unit | Results |
---|---|---|
pH in 1 mol/L KCl | - | 6.2 |
Humus | % | 1.85 |
Nmin | kg∙ha−1 | 55.2 |
P2O5 | mg⸱100 g−1 soil | 18.6 |
K2O | 21.3 | |
Mg | 8.5 | |
Fe | mg⸱kg−1 soil | 2652.3 |
Zn | 18.6 | |
Mn | 362.5 | |
Cu | 5.3 | |
B | 2.1 |
Parameter | Unit | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|---|
pH in 1 mol/L KCl | - | 5.9 c | 6.1 bc | 6.5 a | 6.3 ab | 6.0 bc | 6.3 ab | 6.2 abc |
Humus | % | 1.81 b | 1.88 ab | 1.95 a | 1.91 a | 1.85 ab | 1.91 a | 1.87 ab |
Nmin | kg∙ha−1 | 50.6 c | 54.6 a | 53.1 bc | 53.5 ab | 54.9 a | 53.3 ab | 53.7 ab |
P2O5 | mg⸱100 g−1 soil | 17.5 c | 19.8 a | 18.3 ab | 19.1 a | 18.4 ab | 17.9 bc | 18.1 ab |
K2O | 18.3 c | 21.2 a | 20.3 b | 20.6 ab | 20.8 ab | 20.1 b | 20.2 b | |
Mg | 7.6 b | 8.3 a | 8.6 a | 8.5 a | 8.1 a | 8.5 a | 8.3 a | |
Fe | mg⸱kg−1 soil | 2635.2 a | 2685.3 a | 2655.3 a | 2671.3 a | 2681.2 a | 2648.3 a | 2661.7 a |
Zn | 15.6 a | 16.0 a | 15.7 a | 15.8 a | 15.8 a | 15.7 a | 15.8 a | |
Mn | 360.4 a | 366.5 a | 364.3 a | 365.2 a | 363.4 a | 358.2 a | 360.2 a | |
Cu | 5.0 a | 5.3 a | 5.1 a | 5.2 a | 5.2 a | 5.1 a | 5.1 a | |
B | 1.75 c | 1.82 a | 1.77 bc | 1.81 a | 1.79 abc | 1.76 bc | 1.78 abc |
Fertilisation Treatment | Number of Panicles in a Pot | Plant Height (cm) |
---|---|---|
A | 378.3 b | 83.6 d |
B | 393.3 a | 94.2 bc |
C | 386.3 a | 90.3 c |
D | 390.3 a | 91.8 c |
E | 391.5 a | 98.6 a |
F | 388.3 a | 95.4 ab |
G | 390.2 a | 97.1 a |
Fertilisation Treatments | Number of Grains in a Panicle | Thousand-Grain Weight (g) | Grain Mass per Pot (g) |
---|---|---|---|
A | 20.2 c | 22.6 e | 172.7 e |
B | 30.3 ab | 30.6 c | 364.7 c |
C | 28.3 b | 28.7 d | 313.8 d |
D | 29.5 b | 29.1 cd | 335.1 d |
E | 32.8 a | 36.2 a | 464.9 a |
F | 30.9 ab | 33.9 b | 406.8 b |
G | 31.5 a | 34.1 ab | 419.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W.; Korczyk-Szabó, J.; Macák, M.; Zapałowska, A.; Daneshwar, P.; Habán, M. Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment. Nitrogen 2025, 6, 76. https://doi.org/10.3390/nitrogen6030076
Jarecki W, Korczyk-Szabó J, Macák M, Zapałowska A, Daneshwar P, Habán M. Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment. Nitrogen. 2025; 6(3):76. https://doi.org/10.3390/nitrogen6030076
Chicago/Turabian StyleJarecki, Wacław, Joanna Korczyk-Szabó, Milan Macák, Anita Zapałowska, Puchooa Daneshwar, and Miroslav Habán. 2025. "Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment" Nitrogen 6, no. 3: 76. https://doi.org/10.3390/nitrogen6030076
APA StyleJarecki, W., Korczyk-Szabó, J., Macák, M., Zapałowska, A., Daneshwar, P., & Habán, M. (2025). Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment. Nitrogen, 6(3), 76. https://doi.org/10.3390/nitrogen6030076