Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design
2.3. Agronomic Management
2.4. Data Collection
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Nitrogen Uptake and Nitrogen Exported with Winter Camelina
3.3. Nitrogen Use Efficiency of Winter Camelina
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA NASS. Minnesota State Agriculture Overview. 2023. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MINNESOTA (accessed on 17 February 2023).
- Syswerda, S.P.; Robertson, G.P. Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agric. Ecosyst. Environ. 2014, 189, 28–35. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef]
- Basso, B.; Shuai, G.; Zhang, J.; Robertson, G.P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 2019, 9, 5774. [Google Scholar] [CrossRef] [PubMed]
- Gesch, R.W.; Archer, D.W. Double-cropping with winter camelina in the northern Corn Belt to produce fuel and food. Ind. Crops Prod. 2013, 44, 718–725. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.W.; Johnson, B.; Ji, Y.; Seames, W.; Aponte, A. Double- and relay-cropping of energy crops in the northern Great Plains, USA. Ind. Crops Prod. 2015, 75, 26–34. [Google Scholar] [CrossRef]
- Gesch, R.W.; Mohammed, Y.A.; Walia, M.K.; Hulke, B.S.; Anderson, J.V. Double-cropping oilseed sunflower after winter camelina. Ind. Crops Prod. 2022, 181, 114811. [Google Scholar] [CrossRef]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Liang, B.C.; MacKenzie, A.F. Corn yield and nitrogen uptake as influenced by tillage and applied nitrogen. Can. J. Soil Sci. 1994, 74, 235–240. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Gesch, R.W.; Barbour, N.W. Spring camelina N rate: Balancing agronomics and environmental risk in United States Corn Belt. Arch. Agron. Soil Sci. 2019, 65, 640–653. [Google Scholar] [CrossRef]
- Gregg, S.; Strock, J.S.; Gesch, R.W.; Coulter, J.A.; Garcia y Garcia, A. Rate and time of nitrogen fertilizer application for winter camelina. Agron. J. 2024, 1–13. [Google Scholar] [CrossRef]
- Web Soil Survey. Available online: https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 15 April 2023).
- National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/access/search/dataset-search (accessed on 15 April 2023).
- Woli, K.P.; Boyer, M.J.; Elmore, R.W.; Sawyer, J.E.; Abendroth, L.J.; Barker, D.W. Corn era hybrid response to nitrogen fertilization. Agron. J. 2016, 108, 473–486. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Malhi, S.S.; Johnson, E.N.; Hall, L.M.; May, W.E.; Phelps, S.; Nybo, B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sci. 2019, 94, 35–47. [Google Scholar] [CrossRef]
- Riar, A.; Gill, G.; McDonald, G. Different Post-Sowing Nitrogen Management Approaches Required to Improve Nitrogen and Water Use Efficiency of Canola and Mustard. Front. Plant Sci. 2020, 11, 1111. [Google Scholar] [CrossRef] [PubMed]
- Bronson, K.F.; Hunsaker, D.J.; Thorp, K.R. Nitrogen fertilizer and irrigation effects on seed yield and oil in camelina. Agron. J. 2019, 111, 1712–1719. [Google Scholar] [CrossRef]
- Obeng, E.; Obour, A.K.; Nelson, N.O.; Ciampitti, I.A.; Wang, D. Nitrogen and sulfur application effects on camelina seed yield, fatty acid composition, and nutrient removal. Can. J. Plant Sci. 2021, 101, 353–365. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crops Res. 2013, 145, 60–66. [Google Scholar] [CrossRef]
- Williams, S.T.; Vail, S.; Arcand, M.M. Nitrogen use efficiency in parent vs. hybrid canola under varying nitrogen availabilities. Plants 2021, 10, 2364. [Google Scholar] [CrossRef] [PubMed]
- Riar, A.; Gill, G.; McDonald, G.K. Rate of nitrogen rather than timing of application influence yield and NUE of canola in South Australian Mediterranean Environments. Agronomy 2020, 10, 1505. [Google Scholar] [CrossRef]
Site | Textural Class | OM | pH | CEC | NO3–N | Bray P | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|---|
% | meq 100 g−1 | ppm | |||||||
SWROC | Clay loam | 3.5 | 6.4 | 19 | 3.8 | 8 | 116 | 2402 | 581 |
WCROC | Clay loam | 6.5 | 5.8 | 27 | 5.5 | 13 | 149 | 3002 | 594 |
SLRF | Loam | 3.0 | 7.4 | 20 | 5.9 | 11 | 166 | 3095 | 467 |
Location | Source of Variation | N Uptake | N Exported | AE | NRE | IE |
---|---|---|---|---|---|---|
SWROC | Year (Y) | − | *** | *** | − | − |
Application time (AT) | ns | ns | ns | ns | ns | |
Nitrogen rate (NR) | ***§ | *** | *** | ns | * | |
Y × AT | − | ns | ns | − | − | |
Y × NR | − | ns | ns | − | − | |
AT × NR | ns | ns | ns | * | ns | |
Y × AT × NR | − | ns | ** | − | − | |
WCROC | Year (Y) | − | − | − | − | − |
Application time (AT) | − | ** | ns | − | − | |
Nitrogen rate (NR) | − | *** | *** | − | − | |
Y × AT | − | − | − | − | − | |
Y × NR | − | − | − | − | − | |
AT × NR | − | * | ns | − | − | |
Y × AT × NR | − | − | − | − | − | |
SLRF | Year (Y) | *** | *** | ns | ns | *** |
Application time (AT) | ns | ns | ns | ns | ns | |
Nitrogen rate (NR) | *** | *** | *** | ns | ns | |
Y × AT | ns | ns | ns | ns | * | |
Y × NR | ns | ns | ns | ns | * | |
AT × NR | ns | ns | ns | ns | ns | |
Y × AT × NR | ns | ns | ns | ns | ns |
Location | Year | N Rate | N Uptake | N Exported | AE | NRE | IE | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | T1 † | T2 | T1 | T2 | T1 | T2 | |||||
SWROC | 2019 | 0 | − | 61 c | − | − | − | − | − | − | |
33 | − | 76 bc | 11.4 ab | 19.0 a | − | − | − | − | |||
67 | − | 93 ab | 13.8 a | 9.9 b | − | − | − | − | |||
100 | − | 99 a | 9.4 ab | 9.2 b | − | − | − | − | |||
135 | − | 89 ab | 4.8 b | 6.9 b | − | − | − | − | |||
2020 | 0 | 93 c | 40 c | − | − | − | − | 13.7 a | |||
33 | 138 b | 56 b | 15.7 a | 10.0 a | 78 a | 33 a | 13.0 a | ||||
67 | 147 b | 61 b | 6.3 b | 9.4 a | 26 b | 47 a | 13.2 a | ||||
100 | 175 a | 74 a | 7.8 b | 8.0 ab | 34 ab | 61 a | 13.1 a | ||||
135 | 176 a | 67 ab | 4.1 b | 5.4 b | 37 ab | 43 a | 11.5 a | ||||
WCROC | 2019 | 0 | − | 63 b | 98 b | − | − | − | − | − | |
33 | − | 93 a | 108 ab | 19.6 a | − | − | − | − | |||
67 | − | 100 a | 109 ab | 11.0 b | − | − | − | − | |||
100 | − | 96 a | 105 ab | 6.3 b | − | − | − | − | |||
135 | − | 114 a | 122 a | 7.3 b | − | − | − | − | |||
SLRF | 2019 | 0 | 75 a | 50 b | − | − | 14.3 A § | 12.6 A | |||
33 | 78 a | 64 ab | 9.0 a± | 28 | |||||||
67 | 98 a | 80 a | 6.5 a | ||||||||
100 | 98 a | 60 ab | 3.2 b | ||||||||
135 | 115 a | 68 ab | 1.8 b | ||||||||
2020 | 0 | 34 c | 11 b | Year NS, 2020 combined with 2019 | Year and N rate NS, 2020 combined with 2019 | 8.2 B | 10.4 A | ||||
33 | 50 bc | 27 a | |||||||||
67 | 57 ab | 29 a | |||||||||
100 | 60 ab | 28 a | |||||||||
135 | 68 a | 28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregg, S.; Gesch, R.W.; Garcia y Garcia, A. Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N. Nitrogen 2024, 5, 509-517. https://doi.org/10.3390/nitrogen5020033
Gregg S, Gesch RW, Garcia y Garcia A. Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N. Nitrogen. 2024; 5(2):509-517. https://doi.org/10.3390/nitrogen5020033
Chicago/Turabian StyleGregg, Stephen, Russ W. Gesch, and Axel Garcia y Garcia. 2024. "Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N" Nitrogen 5, no. 2: 509-517. https://doi.org/10.3390/nitrogen5020033
APA StyleGregg, S., Gesch, R. W., & Garcia y Garcia, A. (2024). Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N. Nitrogen, 5(2), 509-517. https://doi.org/10.3390/nitrogen5020033