Optimizing the Nitrogen Use Efficiency in Vegetable Crops
Abstract
:1. Introduction
2. NUE in Vegetable Crops Production
2.1. Background on NUE in Vegetable Crops
2.2. Soil Quality and NUE
2.3. Effect of N Form on Crop Growth and NUE
Crop Species | N Form | References |
---|---|---|
Cucumber, Cucumis sativus; Cucurbits | NO3− improves growth while NH4+ depresses growth (likely due to a lower pH in the root zone). | [99,100] |
Flowering Chinese Cabbage, Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee | Improved yields with a combination of NO3−/NH4+ ratio; Improved yield at 10:0 and 9:1 ratios; Improved NUE at 9:1 ratio. An earlier study found the best growth at 1:1 ratios and marked growth reduction at 1:9 ratios. | [93,101] |
Chinese Kale, Brassica alboglabra L. H. Bailey | Improved growth at NO3−/NH4+ ratio of 3:1 and 9:1; Improved NUE at 3:1 ratio; Inhibited growth at high NH4+ ratios. | [102] |
Lettuce, leafy, Lactuca sativa | Head fresh weight higher with NO3−/NH4+ ratios of 1:1 or 1:0; Greatest NUE at 1:0 or 1:1 ratios. | [103] |
Onion, Allium cepa | No consensus on the effect of N form on yield. An earlier study found that NO3− alone or in combination with NH4+ improved plant growth; bulb weight highest with NO3−/NH4+ ratio of 3:1 to 1:3. | [81,104] |
Pepper, Capsicum annuum | Yields highest when NO3− is the predominant N form, and with an increased NO3−/NH4+ ratio. | [105,106] |
Strawberry, Fragaria × ananassa | Fruit yield greatest at NO3−/NH4+ ratio of 3:1 to 1:1. | [107] |
Taro, Colocasia esculenta | Improved growth with 75:25 or 100:0 NO3−/NH4+ ratios. | [108] |
Tomato, Solanum lycopersicon | Trend to improved yield (but not significant) with 1:4 NO3−/NH4+ ratio; Improved fruit quality with organic N source or with 1:4 NO3−/NH4+ ratio. | [16,109] |
2.4. Crop Improvement for NUE
3. Strategies to Improve NUE in Vegetable Crops
3.1. Development of Fertilizer N Recommendations for Vegetable Crops
3.2. Best Management Practices to Improve NUE
3.3. Crop Rotations Effects on NUE
4. Agroecological Practices to Improve NUE
4.1. Organic and Low-Input Farming Practices Effect on NUE
4.2. System Diversification to Improve NUE
5. Nitrogen x System Interactions That Affect NUE
5.1. Water Use x N Interactions
5.2. Nutrients x N Interactions
5.3. Environmental Stress x N Interactions
5.4. Pest x N Interactions
Pathogen | Notes | References |
---|---|---|
Bacterial rots, Pantonea spp.; Bacterial blights, Pseudomonas | Low foliar N results in higher disease incidence, onion; celery | [152,277] |
Damping-off, Phytophthora, Pythium, Rhizoctonia spp. | High N rates and planting density increase disease severity, eggplant, tomato; N stimulates plant defense compounds, potato | [275,278,279] |
Early blight, Alternaria solani | N deficient tomato and potato plants are more susceptible; N stimulates plant defense compounds, potato, tomato | [272,275,280] |
Foliar diseases, Mycosphaerella, Diplocarpon spp. | Increased incidence with high N during spring applications in strawberry | [281] |
Fruit rots, Botrytis | High N spring applications increase disease incidence, strawberry | [282] |
Fusarium wilt, Fusarium oxysporum | High N favors the disease, tomato; N stimulates plant defense compounds, tomato | [275,278] |
Leaf spots, Botrytis fabae and rust (Uromyces viciae-fabae) | High N results in greater disease incidence on faba bean, Vicia faba L. | [283] |
Soft rots, Erwinia, Pseudomonas, Clostridium | Excessive N may exacerbate the disease on vegetables, affecting fruits, tubers, roots, and foliage; N stimulates plant defense compounds, tomato | [275,278,284] |
Storage diseases, Aspergillus; Bacterial soft rot, Pseudomonas, Erwinia, Botrytis | Increased incidence with excess N rates, onion | [81,285] |
Physiological disorders | Increased incidence of sugar ends in potato with high N rates | [231] |
5.5. Soil Biota x N Interactions
6. Nitrogen Loss Management
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, Y.; Xu, C.; Liu, D.; Wu, W.; Lal, R.; Meng, F. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crop. Res. 2017, 205, 135–146. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen fertilization: A review of the risks associated with the inefficiency of its use and policy responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; De Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 2023, 4, 170–178. [Google Scholar] [CrossRef]
- Schomberg, A.C.; Bringezu, S.; Beusen, A.W. Water quality footprint of agricultural emissions of nitrogen, phosphorus and glyphosate associated with German bioeconomy. Commun. Earth Environ. 2023, 4, 404. [Google Scholar] [CrossRef]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, X.; Yue, F.J.; Yan, Z.; Wang, T.; Li, S.; Liu, C.Q. Nitrogen dynamics in the critical zones of China. Prog. Phys. Geogr. Earth Environ. 2022, 46, 869–888. [Google Scholar] [CrossRef]
- Valenzuela, H. Ecological management of the nitrogen cycle in organic farms. Nitrogen 2023, 4, 6. [Google Scholar] [CrossRef]
- Devi, H.M.; Pongener, N.; Devi, H.S.; Hemanta, L. Effect of plant nutrition on development of plant diseases. In Advances in Agriculture and Allied Technologies; Mahapatra, A., Rout, D.S., Sahu, C., Banik, D., Eds.; AkiNik Publications: New Delhi, India, 2022; pp. 155–163. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Patra, S.; Mandal, A. Significance of Plant E3 ubiquitin ligases in NPK homeostasis: A review. Plant Stress 2023, 10, 100207. [Google Scholar] [CrossRef]
- Tiemens-Hulscher, M.; Lammerts van Bueren, E.T.; Struik, P.C. Identifying nitrogen-efficient potato cultivars for organic farming. Euphytica 2014, 199, 137–154. [Google Scholar] [CrossRef]
- Samari, E.; Sharifi, M.; Ghanati, F.; Fuss, E.; Ahmadian Chashmi, N. Chitosan-induced phenolics production is mediated by nitrogenous regulatory molecules: NO and PAs in Linum album hairy roots. Plant Cell Tissue Organ Cult. 2020, 140, 563–576. [Google Scholar] [CrossRef]
- Gauthier, K.; Pankovic, D.; Nikolic, M.; Hobert, M.; Germeier, C.U.; Ordon, F.; Perovic, D.; Niehl, A. Nutrients and soil structure influence furovirus infection of wheat. Front. Plant Sci. 2023, 14, 1200674. [Google Scholar] [CrossRef]
- Hancock, J.T. Nitric oxide signaling in plants. Plants 2020, 9, 1550. [Google Scholar] [CrossRef]
- Römheld, V.; Jiménez-Becker, S.; Neumann, G.; Gweyi-Onyango, J.P.; Puelschen, L.; Spreer, W.; Bangerth, F. Non-nutritional fertigation effects as a challenge for improved production and quality in horticulture. In Proceedings of the Fertigation: Optimizing the Utilization of Water and Nutrients, Beijing, China, 20–24 September 2005. [Google Scholar]
- Gao, Y.; Qi, S.; Wang, Y. Nitrate signaling and use efficiency in crops. Plant Commun. 2022, 3, 100353. [Google Scholar] [CrossRef]
- Liang, Q.; Dong, M.; Gu, M.; Zhang, P.; Ma, Q.; He, B. MeNPF4. 5 improves cassava nitrogen use efficiency and yield by regulating nitrogen uptake and allocation. Front. Plant Sci. 2022, 13, 866855. [Google Scholar] [CrossRef]
- Jalpa, L.; Mylavarapu, R.S.; Hochmuth, G.; Wright, A.; van Santen, E. Recovery efficiency of applied and residual nitrogen fertilizer in tomatoes grown on sandy soils using the 15N technique. Sci. Hortic. 2021, 278, 109861. [Google Scholar] [CrossRef]
- Engindeniz, S.; Gül, A. Economic analysis of soilless and soil-based greenhouse cucumber production in Turkey. Sci. Agric. 2009, 66, 606–614. [Google Scholar] [CrossRef]
- Duhan, P.K. Cost benefit analysis of tomato production in protected and open farm. Intern. J. Adv. Res. Manag. Soc. Sci. 2016, 5, 140–148. [Google Scholar]
- University Massachusetts Extension. Crop Production Budgets. Center for Agriculture, Food, and the Environment. Available online: https://ag.umass.edu/vegetable/fact-sheets/crop-production-budgets (accessed on 12 October 2023).
- Gianquinto, G.; Muñoz, P.; Pardossi, A.; Ramazzotti, S.; Savvas, D. Soil fertility and plant nutrition. In Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; Plant Production and Protection Paper 217; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Eds.; Food and Agriculture Organization (FAO): Rome, Italy, 2013; pp. 205–270. [Google Scholar]
- Tei, F.; De Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Zou, T.; Zhang, X.; Davidson, E.A. Global trends of cropland phosphorus use and sustainability challenges. Nature 2022, 611, 81–87. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Gallardo, M.; Thompson, R.B. Water and fertilization management of vegetables: State of art and future challenges. Eur. J. Hortic. Sci. 2018, 83, 306–318. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Shao, Q.; Young, M.D.; Zhang, F.; de Vries, W. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nat. Commun. 2023, 14, 5747. [Google Scholar] [CrossRef]
- Feng, R.; Li, Z. Current investigations on global N2O emissions and reductions: Prospect and outlook. Environ. Pollut. 2023, 338, 122664. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Advancing the science and practice of ecological nutrient management for smallholder farmers. Front. Sustain. Food Syst. 2022, 6, 921216. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.; Baligar, V. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Scholberg, J.M.S.; Zotarelli, L.; Dukes, M.D.; Ozores-Hampton, M.; Liu, G.D. Enhancing fertilizer efficiency in high input cropping systems in Florida. Sustain. Agric. Rev. 2013, 12, 143–174. [Google Scholar] [CrossRef]
- Han, M.; Okamoto, M.; Beatty, P.H.; Rothstein, S.J.; Good, A.G. The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. 2015, 49, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, K.; Song, W.; Zhong, N.; Wu, Y.; Fu, X. Improving crop nitrogen use efficiency toward sustainable green revolution. Annu. Rev. Plant Biol. 2022, 73, 523–551. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; GK, S.; Vadivel, R.; TK, D.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- He, G.; Liu, X.; Cui, Z. Achieving global food security by focusing on nitrogen efficiency potentials and local production. Glob. Food Secur. 2021, 29, 100536. [Google Scholar] [CrossRef]
- Tian, X.; Zhuang, M.; Yin, Y.; Cong, J.; Ying, H.; Wang, Y.; Cui, Z. Improved mapping of nitrogen loss and surplus in China’s maize belt. Agron. J. 2022, 114, 2811–2821. [Google Scholar] [CrossRef]
- Zhang, X. A plan for efficient use of nitrogen fertilizers. Nature 2017, 543, 322–323. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Li, Q.; Zeng, X.P.; Liu, Y.; Li, Y.R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Follett, R.F.; Bartolo, M.E.; Schweissing, F.C. Nitrogen fertilizer use efficiency of furrow-irrigated onion and corn. Agron. J. 2002, 94, 442–449. [Google Scholar] [CrossRef]
- de Jesus, H.I.; da Silva, A.L.B.R.; Cassity-Duffey, K.; Coolong, T. Estimating fertilizer nitrogen-use efficiency in transplanted short-day onion. Nitrogen 2023, 4, 21. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Struik, P.C. Diverse concepts of breeding for nitrogen use efficiency: A review. Agron. Sustain. Dev. 2017, 37, 50. [Google Scholar] [CrossRef]
- Haegele, J.W.; Cook, K.A.; Nichols, D.M.; Below, F.E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop. Sci. 2013, 53, 1256–1268. [Google Scholar] [CrossRef]
- Fageria, N.K. Nitrogen harvest index and its association with crop yields. J. Plant Nutr. 2014, 37, 795–810. [Google Scholar] [CrossRef]
- Prasad, R.; Hochmuth, G.J. How to Calculate a Partial Nitrogen Mass Budget for Potato: SL401/SS614, 12/2013; University of Florida: Gainesville, FL, USA, 2020; 6p. [Google Scholar] [CrossRef]
- Lammel, J. Fertilizer best management practices in the context of product stewardship. In Fertilizer Best Management Practices, Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, Belgium; International Fertilizer Industry Association (IFA): Paris, France, 2007; pp. 71–76. [Google Scholar]
- Wortmann, C.S.; Tarkalson, D.D.; Shapiro, C.A.; Dobermann, A.R.; Ferguson, R.B.; Hergert, G.W.; Walters, D. Nitrogen use efficiency of irrigated corn for three cropping systems in Nebraska. Agron. J. 2011, 103, 76–84. [Google Scholar] [CrossRef]
- Dourado-Neto, D.; Powlson, D.; Bakar, R.A.; Bacchi, O.O.S.; Basanta, M.D.V.; Cong, P.T.; Keerthisinghe, G.; Ismaili, M.; Rahman, S.M.; Reichardt, K.; et al. Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci. Soc. Am. J. 2010, 74, 139–152. [Google Scholar] [CrossRef]
- Griesheim, K.L.; Mulvaney, R.L.; Smith, T.J.; Nunes, V.L.; Hertzberger, A.J. Isotopic comparison of ammonium and nitrate sources applied in-season to corn. Soil Sci. Soc. Am. J. 2023, 87, 555–571. [Google Scholar] [CrossRef]
- Vieira-Megda, M.X.; Mariano, E.; Leite, J.M.; Franco, H.C.J.; Vitti, A.C.; Megda, M.M.; Khan, S.A.; Mulvaney, R.L.; Trivelin, P.C.O. Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutr. Cycl. Agroecosyst. 2015, 101, 241–257. [Google Scholar] [CrossRef]
- Anonymous. Nitrogen fertilization of lettuce. Vegetable growers update newsletter. In Extension Newsletter; Colorado State University, Cooperative Extension Service: Fort Collins, CO, USA, 1985. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Barker, A.V. Genotypic responses of vegetable crops to nitrogen nutrition. HortScience 1989, 24, 584–591. [Google Scholar] [CrossRef]
- Hochmuth, G.; Hanlon, E.A. Summary of N, P, and K Research with Tomato in Florida; SL 355; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2020. [Google Scholar]
- Jackson, L.E.; Bloom, A.J. Root distribution in relation to soil nitrogen availability in field-grown tomatoes. Plant Soil 1990, 128, 115–126. [Google Scholar] [CrossRef]
- Fox, R.; Valenzuela, H.R. Vegetables grown under tropical and subtropical conditions. In IFA World Fertilizer Use Manual; Wichmann, W., Ed.; International Fertilizer Industry Assocation: Paris, France, 1992; pp. 293–338. [Google Scholar]
- de Haan, J.J.; Wijnands, F.G. Integrated and Ecological Nutrient Management; De Haan, J.J., Ed.; VEGINECO Project Report No. 3; Applied Plant Research: Wageningen, The Netherlands, 2002; pp. 8–23. [Google Scholar]
- Zink, F. Studies on the growth rate and nutrient absorption of onion. Hilgardia 1966, 37, 203–218. [Google Scholar] [CrossRef]
- Crespo-Ruiz, M.; Goyal, M.; Baez, C.C.D.; Rivera, L.E. Nutrient uptake and growth characteristics of nitrogen fertigated sweet peppers under drip irrigation and plastic mulch. J. Agric. Univ. Puerto Rico 1988, 4, 575–584. [Google Scholar] [CrossRef]
- Sullivan, D.M.; Peachey, R.E.; Heinrich, A.L.; Brewer, L.J. Nutrient Management for Sustainable Vegetable Cropping Systems in Western Oregon; EM 9165; Oregon State University, Extension Service: Corvallis, OR, USA, 2017; 25p. [Google Scholar]
- Bowen, P.; Frey, B. Response of plasticultured bell pepper to staking, irrigation frequency, and fertigated nitrogen rate. HortScience 2002, 37, 95–100. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency–measurement and management. In Fertilizer Best Management Practices, Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, Belgium; International Fertilizer Industry Association (IFA): Paris, France, 2007; pp. 1–28. [Google Scholar]
- Zandvakili, O.R.; Barker, A.V.; Hashemi, M.; Autio, W.R.; Etemadi, F.; Sadeghpour, A. Influence of nitrogen source and rate on lettuce yield and quality. Agron. J. 2022, 114, 1401–1414. [Google Scholar] [CrossRef]
- Zotarelli, L.; Wade, T.; England, G.; Christensen, C. Nitrogen Fertilization Guidelines for Potato Production in Florida; EDIS, HS1429; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2021. [Google Scholar]
- Wang, M.; Wang, L.; Cui, Z.; Chen, X.; Xie, J.; Hou, Y. Closing the yield gap and achieving high N use efficiency and low apparent N losses. Field Crop. Res. 2017, 209, 39–46. [Google Scholar] [CrossRef]
- Buckland, K.R. Evaluating Fertilizer Rate, Crop Rotation and Trap Crops for Effects on Onion Growth and Yield, Soil Health, Thrips Densities and Iris Yellow Spot Virus Incidence. Master’s Thesis, Utah State University, Logan, UT, USA, 2011; 133p. Available online: http://digitalcommons.usu.edu/etd/980 (accessed on 25 November 2023).
- Prasad, R.; Hochmuth, G.J. Environmental nitrogen losses from commercial crop production systems in the Suwannee River Basin of Florida. PLoS ONE 2016, 11, e0167558. [Google Scholar] [CrossRef] [PubMed]
- Grasso, R.; Peña-Fleitas, M.T.; de Souza, R.; Rodríguez, A.; Thompson, R.B.; Gallardo, M.; Padilla, F.M. Nitrogen effect on fruit quality and yield of muskmelon and sweet pepper cultivars. Agronomy 2022, 12, 2230. [Google Scholar] [CrossRef]
- Cui, Z.; Dou, Z.; Chen, X.; Ju, X.; Zhang, F. Managing agricultural nutrients for food security in China: Past, present, and future. Agron. J. 2014, 106, 191–198. [Google Scholar] [CrossRef]
- Casals, J.; Martí, M.; Rull, A.; Pons, C. Sustainable transfer of tomato landraces to modern cropping systems: The effects of environmental conditions and management practices on long-shelf-life tomatoes. Agronomy 2021, 11, 533. [Google Scholar] [CrossRef]
- Knuteson, D.L.; Stevenson, W.R.; Wyman, J.A.; Bussan, A.J.; Colquhoun, J.B.; Laboski, C.A.M.; Silva, E.M. BioIPM Pepper WORKBOOK; A3844; University of Wisconsin-Madison, Cooperative Extension Service: Madison, WI, USA, 2010; 76p. [Google Scholar]
- Lan, G.; Jiao, C.; Wang, G.; Sun, Y.; Sun, Y. Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Sci. Hortic. 2020, 260, 108790. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. Agric. Ecosyst. Environ. 2015, 202, 1–7. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Dry matter and nitrogen partitioning patterns in Bt and non-Bt near-isoline maize hybrids. Crop. Sci. 2007, 47, 1186–1192. [Google Scholar] [CrossRef]
- Zotarelli, L.; Barrett, C.E.; da Silva, A.L.B.R.; Christensen, C.T.; England, G.K. Nitrogen Fertilization Guidelines for Bare-Ground and Plastic Mulch Cabbage Production in Florida; HS1428; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2021. [Google Scholar] [CrossRef]
- Voogt, W. Fertigation in Greenhouse Production. In Proceedings of the Fertigation: Optimizing the Utilization of Water and Nutrients, Beijing, China, 20–24 September 2005. [Google Scholar]
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)—A literature review. Sci. Hortic. 2022, 291, 110591. [Google Scholar] [CrossRef]
- Hochmuth, G.; Hanlon, E.A. Summary of N, P, and K Research with Pepper in Florida; SL334; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2020. [Google Scholar]
- Jones, C.R.; Michaels, T.E.; Schmitz Carley, C.; Rosen, C.J.; Shannon, L.M. Nitrogen uptake and utilization in advanced fresh-market red potato breeding lines. Crop. Sci. 2021, 61, 878–895. [Google Scholar] [CrossRef]
- Jalpa, L.; Mylavarapu, R.S.; Hochmuth, G.J.; Wright, A.L.; van Santen, E. Apparent recovery and efficiency of nitrogen fertilization in tomato grown on sandy soils. HortTechnology 2020, 30, 204–211. [Google Scholar] [CrossRef]
- Daba, N.A.; Li, D.; Huang, J.; Han, T.; Zhang, L.; Ali, S.; Khan, M.N.; Du, J.; Liu, S.; Legesse, T.G.; et al. Long-term fertilization and lime-induced soil pH changes affect nitrogen use efficiency and grain yields in acidic soil under wheat-maize rotation. Agronomy 2021, 11, 2069. [Google Scholar] [CrossRef]
- Grandy, A.S.; Daly, A.B.; Bowles, T.M.; Gaudin, A.C.; Jilling, A.; Leptin, A.; McDaniel, M.D.; Wade, J.; Waterhouse, H. The nitrogen gap in soil health concepts and fertility measurements. Soil Biol. Biochem. 2022, 175, 108856. [Google Scholar] [CrossRef]
- Carlson, M.; Hauber, R.; Krause, L.; Kretz, R. WCROC Farm Sustainability Project: Considering Online Decision Support Tools; Humphrey School Capstone Report; The Hubert H. Humphrey School of Public Affairs, The University of Minnesota: Minneapolis, MN, USA, 2021; 46p. [Google Scholar]
- Howeler, R.H. Long-term effect of cassava cultivation on soil productivity. Field Crop. Res. 1991, 26, 1–18. [Google Scholar] [CrossRef]
- Bolin, P.; Brandenberger, L. (Eds.) Cucurbit Integrated Crop Management; E-853; University Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2001; 96p. [Google Scholar]
- Johansen, T.J.; Thomsen, M.G.; Loes, A.-K.; Riley, H. Root development in potato and carrot crops—Influences of soil compaction. Acta Agric. Scand. 2015, 65, 182–192. [Google Scholar] [CrossRef]
- Breland, T.A.; Hansen, S. Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol. Biochem. 1996, 28, 655–663. [Google Scholar] [CrossRef]
- Xu, Y.; Jeanne, T.; Hogue, R.; Shi, Y.; Ziadi, N.; Parent, L.E. Soil bacterial diversity related to soil compaction and aggregates sizes in potato cropping systems. Appl. Soil Ecol. 2021, 168, 104147. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3- ratio triggers plant growth and nutrient uptake of flowering Chinese cabbage by optimizing the pH value of nutrient solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Aloni, B. Effects of fertigation regime on blossom end rot of vegetable fruits. In Proceedings of the Fertigation: Optimizing the Utilization of Water and Nutrients, Beijing, China, 20–24 September 2005. [Google Scholar]
- Topcu, Y.; Nambeesan, S.U.; van der Knaap, E. Blossom-end rot: A century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. Mol. Hortic. 2022, 2, 1. [Google Scholar] [CrossRef]
- Goos, R.J.; Schimelfenig, J.A.; Bock, B.R.; Johnson, B.E. Response of spring wheat to nitrogen fertilizers of different nitrification rates. Agron. J. 1999, 91, 287–293. [Google Scholar] [CrossRef]
- Yamagata, M.; Ae, N. Direct acquisition of organic nitrogen by crops. Jpn. Agric. Res. Quart. 1999, 33, 15–21. [Google Scholar]
- Petersen, S.O.; Schjønning, P.; Olesen, J.E.; Christensen, S.; Christensen, B.T. Sources of nitrogen for winter wheat in organic cropping systems. Soil Sci. Soc. Am. J. 2013, 77, 155–165. [Google Scholar] [CrossRef]
- Alan, R. The effect of nitrogen nutrition on growth, chemical composition and response of cucumbers (Cucumis sativus L.) to nitrogen forms in solution culture. J. Hortic. Sci. 1989, 64, 467–474. [Google Scholar] [CrossRef]
- Nerson, H. Mineral nutrition of cucurbit crops. Dyn. Soil Dyn. Plant 2008, 2, 23–32. [Google Scholar]
- Zhang, F.C.; Kang, S.Z.; Li, F.S.; Zhang, J.H. Growth and major nutrient concentrations in Brassica campestris supplied with different NH4+/NO3− ratios. J. Integr. Plant Biol. 2007, 49, 455–462. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liu, H.; Sun, G.; Song, S.; Chen, R. High NH4+/NO3− ratio inhibits the growth and nitrogen uptake of Chinese kale at the late growth stage by ammonia toxicity. Horticulturae 2022, 8, 8. [Google Scholar] [CrossRef]
- Urlić, B.; Jukić Špika, M.; Becker, C.; Kläring, H.P.; Krumbein, A.; Goreta Ban, S.; Schwarz, D. Effect of NO3 and NH4 concentrations in nutrient solution on yield and nitrate concentration in seasonally grown leaf lettuce. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 748–757. [Google Scholar] [CrossRef]
- Gamiely, S.; Randle, W.M.; Mills, H.A.; Smittle, D.A.; Banna, G.I. Onion plant growth, bulb quality, and water uptake following ammonium and nitrate nutrition. HortScience 1991, 26, 1061–1063. [Google Scholar] [CrossRef]
- Marti, H.R.; Mills, H.A. Calcium uptake and concentration in bell pepper plants as influenced by nitrogen form and stages of development. J. Plant Nutr. 1991, 14, 1177–1185. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Aloni, B.; Karni, L.; Rosenberg, R. Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3: NH4 ratio on growth, transpiration, and nutrient uptake. HortScience 2001, 36, 1252–1259. [Google Scholar] [CrossRef]
- Tabatabaei, S.J.; Yusefi, M.; Hajiloo, J. Effects of shading and NO3: NH4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic. 2008, 116, 264–272. [Google Scholar] [CrossRef]
- Osorio, N.W.; Shuai, X.; Miyasaka, S.; Wang, B.; Shirey, R.L.; Wigmore, W.J. Nitrogen level and form affect taro growth and nutrition. HortScience 2003, 38, 36–40. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Nitrogen form affects yield and taste of tomatoes. J. Sci. Food Agric. 2005, 85, 1405–1414. [Google Scholar] [CrossRef]
- FAOStat. 2023. Available online: https://www.fao.org/faostat/en/#data (accessed on 9 November 2023).
- Woli, K.P.; Boyer, M.J.; Elmore, R.W.; Sawyer, J.E.; Abendroth, L.J.; Barker, D.W. Corn era hybrid response to nitrogen fertilization. Agron. J. 2016, 108, 473–486. [Google Scholar] [CrossRef]
- Brancourt-Hulmel, M.; Doussinault, G.; Lecomte, C.; Bérard, P.; Le Buanec, B.; Trottet, M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop. Sci. 2003, 43, 37–45. [Google Scholar] [CrossRef]
- Andorf, C.; Beavis, W.D.; Hufford, M.; Smith, S.; Suza, W.P.; Wang, K.; Woodhouse, M.; Yu, J.; Lübberstedt, T. Technological advances in maize breeding: Past, present and future. Theor. Appl. Genet. 2019, 132, 817–849. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, H.R. Ecologically-based practices for vegetable crops production in the Tropics. HortReviews 2000, 24, 139–228. [Google Scholar] [CrossRef]
- Abenavoli, M.R.; Longo, C.; Lupini, A.; Miller, A.J.; Araniti, F.; Mercati, F.; Princi, M.P.; Sunseri, F. Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiol. Biochem. 2016, 107, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, G.; Rosa-Martínez, E.; Sahin, A.; García-Fortea, E.; Plazas, M.; Prohens, J.; Vilanova, S. Evaluation of advanced backcrosses of eggplant with Solanum elaeagnifolium introgressions under low N conditions. Agronomy 2021, 11, 1770. [Google Scholar] [CrossRef]
- Ayadi, S.; Jallouli, S.; Chamekh, Z.; Zouari, I.; Landi, S.; Hammami, Z.; Ben Azaiez, F.E.; Baraket, M.; Esposito, S.; Trifa, Y. Variation of grain yield, grain protein content and nitrogen use efficiency components under different nitrogen rates in Mediterranean durum wheat genotypes. Agriculture 2022, 12, 916. [Google Scholar] [CrossRef]
- Di Miceli, G.; Farruggia, D.; Iacuzzi, N.; Bacarella, S.; La Bella, S.; Consentino, B.B. Planting date and different N-fertilization rates differently modulate agronomic and economic traits of a Sicilian onion landrace and of a commercial variety. Horticulturae 2022, 8, 454. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Cebolla-Cornejo, J.; Carrillo, L.; Gil-Villar, D.; Martí, R.; Jiménez-Gómez, J.M.; Granell, A.; Monforte, A.J.; Medina, J.; Molina, R.V.; et al. Identification of Solanum pimpinellifolium genome regions for increased resilience to nitrogen deficiency in cultivated tomato. Sci. Hortic. 2024, 323, 112497. [Google Scholar] [CrossRef]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop. Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Witcombe, A.M.; Tiemann, L.K.; Chikowo, R.; Snapp, S.S. Diversifying with grain legumes amplifies carbon in management-sensitive soil organic carbon pools on smallholder farms. Agric. Ecosyst. Environ. 2023, 356, 108611. [Google Scholar] [CrossRef]
- Liang, K.A.N.G.; Liang, Q.Y.; Jiang, Q.; Yao, Y.H.; Dong, M.M.; Bing, H.E.; Gu, M.H. Screening of diverse cassava genotypes based on nitrogen uptake efficiency and yield. J. Integr. Agric. 2020, 19, 965–974. [Google Scholar] [CrossRef]
- Mauceri, A.; Bassolino, L.; Lupini, A.; Badeck, F.; Rizza, F.; Schiavi, M.; Toppino, L.; Abenavoli, M.R.; Rotino, G.L.; Sunseri, F. Genetic variation in eggplant for nitrogen use efficiency under contrasting NO3-supply. J. Integr. Plant Biol. 2020, 62, 487–508. [Google Scholar] [CrossRef] [PubMed]
- Ospina, C.A.; Lammerts van Bueren, E.T.; Allefs, J.J.H.M.; Engel, B.V.; Van der Putten, P.E.L.; Van der Linden, C.G.; Struik, P.C. Diversity of crop development traits and nitrogen use efficiency among potato cultivars grown under contrasting nitrogen regimes. Euphytica 2014, 199, 13–29. [Google Scholar] [CrossRef]
- Adam, M.B.; Ulas, A. Vigorous rootstocks improve nitrogen efficiency of tomato by inducing morphological, physiological and biochemical responses. Gesunde Pflanz. 2023, 75, 565–575. [Google Scholar] [CrossRef]
- Machado, J.; Fernandes, A.P.G.; Fernandes, T.R.; Heuvelink, E.; Vasconcelos, M.W.; Carvalho, S.M.P. Drought and nitrogen stress effects and tolerance mechanisms in tomato: A review. In Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2022; pp. 315–359. [Google Scholar] [CrossRef]
- Bowles, T.M.; Hollander, A.D.; Steenwerth, K.; Jackson, L.E. Tightly-coupled plant-soil nitrogen cycling: Comparison of organic farms across an agricultural landscape. PLoS ONE 2015, 10, e0131888. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, C.; Jia, Y.; Wang, Q.; Han, G.; Tian, X. Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant Soil 2011, 338, 355–366. [Google Scholar] [CrossRef]
- Hobley, E.U.; Honermeier, B.; Don, A.; Gocke, M.I.; Amelung, W.; Kögel-Knabner, I. Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization. Agric. Ecosyst. Environ. 2018, 265, 363–373. [Google Scholar] [CrossRef]
- Congreves, K.A.; Van Eerd, L.L. Nitrogen cycling and management in intensive horticultural systems. Nutr. Cycl. Agroecosystems 2015, 102, 299–318. [Google Scholar] [CrossRef]
- Pinto, R.; Brito, L.M.; Mourão, I.; Coutinho, J. Nitrogen balance in organic horticultural rotations. Acta Hortic. 2020, 1286, 127–134. [Google Scholar] [CrossRef]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.J. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutr. Cycl. Agroecosyst. 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Karimi, R.; Janzen, H.H.; Smith, E.G.; Ellert, B.H.; Kröbel, R. Nitrogen balance in century-old wheat experiments. Can. J. Soil Sci. 2017, 9, 580–591. [Google Scholar] [CrossRef]
- Jones, C.; Jacobsen, J. Fertilizer placement and timing. In Nutrient Management Module, 11; 4449-11; Montana State University Cooperative Extension Service: Bozeman, MT, USA, 2009; 16p. [Google Scholar]
- Greenwood, D.J.; Cleaver, T.J.; Turner, M.K.; Hunt, J.; Niendorf, K.B.; Loquens, S.M.H. Comparison of the effects of nitrogen fertilizer on the yield, nitrogen content and quality of 21 different vegetable and agricultural crops. J. Agric. Sci. 1980, 95, 471–485. [Google Scholar] [CrossRef]
- Gao, Q.; Li, C.; Feng, G.; Wang, J.; Cui, Z.; Chen, X.; Zhang, F. Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed corn. Agron. J. 2012, 104, 165–168. [Google Scholar] [CrossRef]
- Pickens, J.M.; Danaher, J.J.; Sibley, J.L.; Chappell, J.A.; Hanson, T.R. Integrating greenhouse cherry tomato production with biofloc tilapia production. Horticulturae 2020, 6, 44. [Google Scholar] [CrossRef]
- Hahn, L.; Kurtz, C.; Paula, B.V.; Feltrim, A.L.; Higashikawa, F.S.; Moreira, C.; Rozane, D.E.; Brunetto, G.; Parent, L.É. Customized nutrient management of onion (Allium cepa) agroecosystems. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Hochmuth, G.J.; Hanlon, E. Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida; HS964; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2022; 50p. [Google Scholar]
- Jat, R.A.; Wani, S.P.; Sahrawat, K.L.; Singh, P.; Dhaka, P.L. Fertigation in vegetable crops for higher productivity and resource use efficiency. Indian J. Fert. 2011, 7, 22–37. [Google Scholar]
- Prasad, R.; Hochmuth, G.J.; Boote, K.J. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PLoS ONE 2015, 10, e0117891. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.G.; Tarsitano, D.; Topp, C.F.; Jones, S.K.; Gerrard, C.L.; Pearce, B.D.; Williams, A.G.; Watson, C.A. Predicting the effect of rotation design on N, P, K balances on organic farms using the NDICEA model. Renew. Agric. Food Syst. 2016, 31, 471–484. [Google Scholar] [CrossRef]
- Zaeen, A.A. Improving Nitrogen Management in Potatoes with Active Optical Sensors. Ph.D. Thesis, The University of Maine, Orono, ME, USA, 2020; 200p. [Google Scholar]
- Higashikawa, F.S.; Cantú, R.R.; Jindo, K.; Kurtz, C.; de Souza Gonçalves, P.A.; Vieira Neto, J. Use of compost in onion cultivation under no-tillage system: Effect on nutrient uptake. Commun. Soil Sci. Plant Anal. 2023, 54, 1215–1238. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Richard, S.J.; Flewelling, N.L. Crop Profile for Carrots in California; University of California Cooperative Extension: Ventura, CA, USA; USDA OPMP & Pesticide Assessment Program (PIAP): Washington, DC, USA, 2000.
- Anonymous. Crop Profile for Carrots in Florida; University of Florida Cooperative Extension Service: Gainesville, FL, USA; USDA Office of Pest Management Policy (OPMP) & Pesticide Assessment Program (PIAP): Washington, DC, USA, 1999.
- Tyler, K.B. Nitrogen fertilization of California vegetable crops. Vegetable Briefs Newsletter, 8 January 1975; No. 175. University of California Cooperative Extension Service: Davis, CA, USA, 1975. [Google Scholar]
- Takele, E.; Daugovish, O.; Vue, M. Costs and Profitability Analysis for Celery Production in the Oxnard Plain, Ventura County, 2012–2013; University of California Cooperative Extension: Ventura, CA, USA, 2013. [Google Scholar]
- Knuteson, D.L.; Groves, R.L.; Colquhoun, J.B.; Ruark, M.; Gevens, A.J.; Bussan, A.J. BioIPM Vine Crops Workbook; University of Wisconsin-Madison, Cooperative Extension Service: Madison, WI, USA, 2012; 118p. [Google Scholar]
- Anonymous. Crop Profile for Squash in California; USDA Office of Pest Management Policy (OPMP) & Pesticide Assessment Program (PIAP): Washington, DC, USA, 2000.
- Hochmuth, G.; Hanlon, E.A. Summary of N, P, and K Research with Watermelon in Florida; SL325; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2020; 20p. [Google Scholar]
- Pfeufer, E.E. Sources of Inoculum, Epidemiology, and Integrated Management of Bacterial Rots of Onion (Allium cepa) with a Focus on Center Rot, Caused by Pantoea ananatis and Pantoea agglomerans. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2014; 149p. [Google Scholar]
- Alston, D.G. Onion Thrips (Thrips tabaci); Fact Sheet. ENT-117-08PR; Utah State University Cooperative Extension Service: Logan, UT, USA, 2008; 7p. [Google Scholar]
- Waters, T.; Wohleb, C. Thrips; Fact Sheet, FS126E; Washington State Cooperative Extension Service: Pullman, WA, USA, 2014. [Google Scholar]
- Coolong, T.; da Silva, A.L.B.R.; Shealey, J. Fertilizer program impacts yield and blossom end rot in bell pepper. HortTechnology 2019, 29, 163–169. [Google Scholar] [CrossRef]
- Le Strange, M.; Schrader, W.; Hartz, T. Fresh-Market Tomato Production in California; Publication 8017; University of California Cooperative Extension: Ventura, CA, USA; UCANR Publications: Berkeley, CA, USA, 2000. [Google Scholar]
- Gatton, H.; Nessler, S.; Kuhar, T.; Jennings, K.; King, S.; Monks, D.; Rideout, S.; Troth, S.; Waldenmeire, C.; Weaver, M.; et al. Pest Management Strategic Plan for Tomato in Virginia, North Carolina and Delaware; Southern Region IPM Center, Virginia Tech: Blacksburg, VA, USA; North Carolina State University: Raleigh, NC, USA; University of Delaware: Newark, DE, USA, 2007. [Google Scholar]
- Jalpa, L.; Mylavarapu, R. Current tomato production practices and their effects on plant and soil carbon and nitrogen dynamics. J. Plant Nutr. 2023, 16, 3905–3917. [Google Scholar] [CrossRef]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Martinez, D.A.; Loening, U.E.; Graham, M.C.; Gathorne-Hardy, A. When the medicine feeds the problem; Do nitrogen fertilisers and pesticides enhance the nutritional quality of crops for their pests and pathogens? Front. Sustain. Food Syst. 2021, 5, 701310. [Google Scholar] [CrossRef]
- Hochmuth, G.; Hanlon, E. The Four Rs of Fertilizer Management; SL411; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2022; 5p. [Google Scholar]
- Ahmad, N. Fertilizer best management practices in Pakistan. In Fertilizer Best Management Practices, Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, Belgium; International Fertilizer Industry Association (IFA): Paris, France, 2007; pp. 213–220. [Google Scholar]
- Hartz, T. Nitrogen management, evaluating practices for coastal production of Brassica crops. Vegetables West Magazine, May 2001; p. 11. [Google Scholar]
- Anonymous. Nitrogen Pollution and the European Environment Implications for Air Quality Policy. In-Depth Report; Science for Environment Policy, European Commission; Science Communication Unit, University of the West of England: Bristol, UK, 2013; 28p. [Google Scholar]
- Overeem, R. Physiology and Genetic Variation of Nitrogen Use Efficiency in Spinach (Spinacia oleracea L.). Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2015; 86p. [Google Scholar]
- Rao, I.M.; Miles, J.W.; Beebe, S.E.; Horst, W.J. Root adaptations to soils with low fertility and aluminium toxicity. Ann. Bot. 2016, 118, 593–605. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, C.H.; Li, Q.L.; Li, B.; Zhu, Y.Y.; Xiong, Z.Q. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Dodgson, J.; Weston, A.K.; Marks, D.J. Use of stabilised amine nitrogen (SAN) reduces required nitrogen input and increases yield of onions (Allium cepa L.). Crops 2023, 3, 15. [Google Scholar] [CrossRef]
- Das, D.; Dwivedi, B.S.; Meena, M.C.; Singh, V.K.; Tiwari, K.N. Integrated nutrient management for improving soil health and crop productivity. Indian J. Fert. 2015, 11, 64–83. [Google Scholar]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.; Hanselman, T.; Le Femminella, K.; Munoz-Carpena, R. Nitrogen and water use efficiency of zucchini squash for a plastic mulch bed system on a sandy soil. Sci. Hortic. 2008, 116, 8–16. [Google Scholar] [CrossRef]
- Danso, E.O.; Abenney-Mickson, S.; Sabi, E.B.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.O.; Jensen, C.R.; Andersen, M.N. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2015, 147, 34–42. [Google Scholar] [CrossRef]
- Russo, V.M. Plant density and nitrogen fertilizer rate on yield and nutrient content of onion developed from greenhouse-grown transplants. HortScience 2008, 43, 1759–1764. [Google Scholar] [CrossRef]
- Kirimi, J.K.; Itulya, F.M.; Mwaja, V.N. Effects of nitrogen and spacing on fruit yield of tomato. African J. Hort. Sci. 2011, 5, 50–60. [Google Scholar]
- Gastal, F.; Lemaire, G.; Durand, J.L.; Louarn, G. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In Crop Physiology; Sadras, V.O., Calderini, D., Eds.; Academic Press: London, UK, 2015; pp. 161–206. [Google Scholar] [CrossRef]
- Vidigal, S.M.; Moreira, M.A.; Paes, J.; Pedrosa, M.W. Does high onion plant density increase nitrogen demand? Rev. Caatinga 2023, 36, 381–389. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Wang, Y.S.; Wang, X.C.; Rengel, Z.; Zhang, W.J.; Shu, L.Z. Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agric. Water Manag. 2020, 233, 106049. [Google Scholar] [CrossRef]
- Plaza, B.M.; Lao, M.T.; Jiménez-Becker, S. Fertigation strategies to alleviate fertilizer contamination generated by tomato crops under plastic greenhouses. Agronomy 2021, 11, 444. [Google Scholar] [CrossRef]
- Huang, Y.; Brown, M. Advancing to the next generation of precision agriculture. In Agriculture & Food Systems to 2050: Global Trends, Challenges and Opportunities; Serraj, R., Pingali, P., Eds.; World Scientific Pub: Singapore, 2019; pp. 285–314. [Google Scholar]
- Padilla, F.M.; Farneselli, M.; Gianquinto, G.; Tei, F.; Thompson, R.B. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agric. Water Manag. 2020, 241, 106356. [Google Scholar] [CrossRef]
- Colla, G.; Suárez, C.M.C.; Cardarelli, M.; Rouphael, Y. Improving nitrogen use efficiency in melon by grafting. HortScience 2010, 45, 559–565. [Google Scholar] [CrossRef]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floc’h, J.B.; Hamel, C.; Siddique, K.H.; Li, L.; et al. Diversifying crop rotations enhances agroecosystem services and resilience. Adv. Agron. 2022, 173, 299–335. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen fertilization II: Management practices to sustain crop production and soil and environmental quality. In Nitrogen Fixation; Rigobelo, E., Serra, P.A., Eds.; IntechOpen: London, UK, 2019; pp. 1–23. [Google Scholar] [CrossRef]
- Breza, L.C.; Mooshammer, M.; Bowles, T.M.; Jin, V.L.; Schmer, M.R.; Thompson, B.; Grandy, A.S. Complex crop rotations improve organic nitrogen cycling. Soil Biol. Biochem. 2023, 177, 108911. [Google Scholar] [CrossRef]
- Simonne, E.; Hochmuth, G. Double Cropping Vegetables Grown with Plasticulture in Florida in the BMP Era; HS908/HS165, IFAS, EDIS; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2003. [Google Scholar] [CrossRef]
- Matsumura, A.; Hirosawa, K.; Masumoto, H.; Daimon, H. Effects of maize as a catch crop on subsequent garland chrysanthemum and green soybean production in soil with excess nitrogen. Sci. Hortic. 2020, 273, 109640. [Google Scholar] [CrossRef]
- Ma, Y.; Kang, L.; Li, Y.; Zhang, X.; Cardenas, L.M.; Chen, Q. Is sorghum a promising summer catch crop for reducing nitrate accumulation and enhancing eggplant yield in intensive greenhouse vegetable systems? Plant Soil 2023, 11, 1–13. [Google Scholar] [CrossRef]
- Re, M.I.Z.; Rath, S.; Dukes, M.D.; Graham, W. Water and nitrogen budget dynamics for a maize-peanut rotation in Florida. Trans. ASABE 2020, 63, 2003–2020. [Google Scholar] [CrossRef]
- West, J.R.; Ruark, M.D.; Bussan, A.J.; Colquhoun, J.B.; Silva, E.M. Nitrogen and weed management for organic sweet corn production on loamy sand. Agron. J. 2016, 108, 758–769. [Google Scholar] [CrossRef]
- Toda, M.; Walder, F.; van der Heijden, M.G. Organic management and soil health promote nutrient use efficiency. J. Sustain. Agric. Environ. 2023, 2, 215–224. [Google Scholar] [CrossRef]
- Bender, S.F.; Schulz, S.; Martínez-Cuesta, R.; Laughlin, R.J.; Kublik, S.; Pfeiffer-Zakharova, K.; Vestergaard, G.; Hartman, K.; Parladé, E.; Römbke, J.; et al. Simplification of soil biota communities impairs nutrient recycling and enhances above-and belowground nitrogen losses. New Phytol. 2023, 240, 2020–2034. [Google Scholar] [CrossRef]
- Bressler, A.; Blesh, J. A grass-legume cover crop maintains nitrogen inputs and nitrous oxide fluxes from an organic agroecosystem. Ecosphere 2023, 14, e4428. [Google Scholar] [CrossRef]
- Sinha, R.K.; Agarwal, S.; Chauhan, K.; Valani, D. The wonders of earthworms & its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers. Agric. Sci. 2010, 1, 76–94. [Google Scholar] [CrossRef]
- Coppens, J.; Grunert, O.; Van Den Hende, S.; Vanhoutte, I.; Boon, N.; Haesaert, G.; De Gelder, L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 2016, 28, 2367–2377. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F.; Hassanien, H.A.; Alsanie, W.F.; Gaber, A.; Elshobary, M.E. The potential of a new commercial seaweed extract in stimulating morpho-agronomic and bioactive properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Braun, J.C.; Colla, L.M. Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Res. 2023, 16, 289–310. [Google Scholar] [CrossRef]
- Libutti, A.; Russo, D.; Lela, L.; Ponticelli, M.; Milella, L.; Rivelli, A.R. Enhancement of yield, phytochemical content and biological activity of a leafy vegetable (Beta vulgaris L. var. cycla) by using organic amendments as an alternative to chemical fertilizer. Plants 2023, 12, 569. [Google Scholar] [CrossRef]
- Youssef, M.A.; Yousef, A.F.; Ali, M.M.; Ahmed, A.I.; Lamlom, S.F.; Strobel, W.R.; Kalaji, H.M. Exogenously applied nitrogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility. AMB Express 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Choi, W.J.; Ro, H.M.; Chang, S.X. Recovery of fertilizer-derived inorganic-15 N in a vegetable field soil as affected by application of an organic amendment. Plant Soil 2004, 263, 191–201. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Xie, Y.; Kristensen, H.L. Overwintering grass-clover as intercrop and moderately reduced nitrogen fertilization maintain yield and reduce the risk of nitrate leaching in an organic cauliflower (Brassica oleracea L. var. botrytis) agroecosystem. Sci. Hortic. 2016, 206, 71–79. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Shanmugam, S.; Hefner, M.; Pelck, J.S.; Labouriau, R.; Kristensen, H.L. Complementary resource use in intercropped faba bean and cabbage by increased root growth and nitrogen use in organic production. Soil Use Manag. 2022, 38, 729–740. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: A review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Wolz, K.J.; Branham, B.E.; DeLucia, E.H. Reduced nitrogen losses after conversion of row crop agriculture to alley cropping with mixed fruit and nut trees. Agric. Ecosyst. Environ. 2018, 258, 172–181. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Shao, G.; Martinson, G.O.; Corre, M.D.; Luo, J.; Niu, D.; Bischel, X.; Veldkamp, E. Impacts of monoculture cropland to alley cropping agroforestry conversion on soil N2O emissions. GCB Bioenergy 2023, 15, 58–71. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Li, H.; Hill, N.; Wallace, J. A perennial living mulch system fosters a more diverse and balanced soil bacterial community. PLoS ONE 2023, 18, e0290608. [Google Scholar] [CrossRef]
- van Ruijven, J.; Berendse, F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. USA 2005, 102, 695–700. [Google Scholar] [CrossRef]
- Doran, J.W.; Smith, M.S. Role of cover crops in nitrogen cycling. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 85–90. [Google Scholar]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.; Sainju, U.M. Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol. Fert. Soils 1988, 26, 346–353. [Google Scholar] [CrossRef]
- Chinta, Y.D.; Uchida, Y.; Araki, H. Availability of nitrogen supply from cover crops during residual decomposition by soil microorganisms and its utilization by lettuce (Lactuca sativa L.). Sci. Hortic. 2020, 270, 109415. [Google Scholar] [CrossRef]
- White, K.E.; Brennan, E.B.; Cavigelli, M.A.; Smith, R.F. Winter cover crops increased nitrogen availability and efficient use during eight years of intensive organic vegetable production. PLoS ONE 2022, 17, e0267757. [Google Scholar] [CrossRef] [PubMed]
- Muchanga, R.A.; Araki, H. Cover crop residue management for effective use of mineralized nitrogen in greenhouse tomato production. In Nitrogen in Agriculture-Physiological, Agricultural and Ecological Aspects; Ohyama, T., Inubushi, K., Eds.; IntechOpen: London, UK, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Collins, H.P.; Delgado, J.A.; Alva, A.K.; Follett, R.F. Use of Nitrogen-15 isotopic techniques to estimate nitrogen cycling from a mustard cover crop to potatoes. Agron. J. 2007, 99, 27–35. [Google Scholar] [CrossRef]
- Delgado, J.A.; Mosquera, V.H.B.; Alwang, J.R.; Villacis-Aveiga, A.; Ayala, Y.E.C.; Neer, D.; Monar, C.; López, L.O.E. Potential use of cover crops for soil and water conservation, nutrient management, and climate change adaptation across the tropics. Adv. Agron. 2021, 165, 175–247. [Google Scholar] [CrossRef]
- Jahanzad, E.; Barker, A.V.; Hashemi, M.; Sadeghpour, A.; Eaton, T. Forage radish and winter pea cover crops outperformed rye in a potato cropping system. Agron. J. 2017, 109, 646–653. [Google Scholar] [CrossRef]
- Feng, L.; Yang, W.T.; Zhou, Q.; Tang, H.Y.; Ma, Q.Y.; Huang, G.Q.; Wang, S.B. Effects of interspecific competition on crop yield and nitrogen utilisation in maize-soybean intercropping system. Plant Soil Environ. 2021, 67, 460–467. [Google Scholar] [CrossRef]
- Chen, P.; Du, Q.; Liu, X.; Zhou, L.I.; Hussain, S.; Lei, L.U.; Song, C.; Wang, X.; Liu, W.; Yang, F.; et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE 2017, 12, e0184503. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liao, D.; Wu, X.; Gao, R.; Fan, Y.; Raza, M.A.; Wang, X.; Yong, T.; Liu, W.; Liu, J.; et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crop. Res. 2017, 203, 16–23. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Zhang, Y.; Hu, Q. Quantifying inter-species nitrogen competition in the tomato-corn intercropping system with different spatial arrangements. Agric. Syst. 2022, 201, 103461. [Google Scholar] [CrossRef]
- Warren Raffa, D.; Migliore, M.; Campanelli, G.; Leteo, F.; Trinchera, A. Effects of faba bean strip cropping in an outdoor organic tomato system on soil nutrient availability, production, and N budget under different fertilizations. Agronomy 2022, 12, 1372. [Google Scholar] [CrossRef]
- Guo, J.Y.; Bradshaw, A.D. The flow of nutrients and energy through a Chinese farming system. J. Appl. Ecol. 1993, 30, 86–94. [Google Scholar] [CrossRef]
- Fruscella, L.; Kotzen, B.; Paradelo, M.; Milliken, S. Investigating the effects of fish effluents as organic fertilisers on onion (Allium cepa) yield, soil nutrients, and soil microbiome. Sci. Hortic. 2023, 321, 112297. [Google Scholar] [CrossRef]
- Valenzuela, H.R.; Schaffer, B.; O’Hair, S.K. Shade and nitrogen influence gas exchange and growth of cocoyam (Xanthosoma sagittifolium). J. Amer. Soc. Hortic. Sci. 1990, 115, 1014–1018. [Google Scholar] [CrossRef]
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Williams, C.O. Nitrogen-climate interactions in US agriculture. Biogeochemistry 2013, 114, 41–70. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Nayak, H.S.; Silva, J.V.; Parihar, C.M.; Kakraliya, S.K.; Krupnik, T.J.; Bijarniya, D.; Jat, M.L.; Sharma, P.C.; Jat, H.S.; Sidhu, H.S.; et al. Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices. Field Crop. Res. 2022, 275, 108328. [Google Scholar] [CrossRef]
- Schmid, C.J. Influence of Nutrient Management and Soil pH on Anthracnose Severity of Annual Bluegrass Putting Green Turf. Ph.D. Thesis, Rutgers University-Graduate School-New Brunswic, New Brunswick, NJ, USA, 2016; 298p. [Google Scholar]
- Plaza-Bonilla, D.; Cantero-Martínez, C.; Bareche, J.; Arrúe, J.L.; Lampurlanés, J.; Álvaro-Fuentes, J. Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions? Field Crop. Res. 2017, 203, 74–85. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Abamu, F.J. Matching improved maize production technologies to the resource base of farmers in a moist savanna. Agric. Syst. 2003, 76, 1067–1084. [Google Scholar] [CrossRef]
- Mu, T.; Yue, X.; Zang, Z.; Wang, H.; Liang, J.; Yang, Q.; Guo, J.; Li, N.; Liu, X.; You, Q. Coupling effect of water and soluble organic fertilizer on yield and quality of Panax notoginseng under micro-sprinkler irrigation in Southwest China. Agronomy 2023, 13, 1742. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of agriculture and implications for improved water and nutrient management. In Proceedings of the Fertigation: Optimizing the Utilization of Water and Nutrients, Beijing, China, 20–24 September 2005. [Google Scholar]
- Ayankojo, I.T.; Morgan, K.T. Optimizing tomato growth and productivity using nitrogen and irrigation application timing. Agronomy 2021, 11, 1968. [Google Scholar] [CrossRef]
- Li, S.; Tan, D.; Wu, X.; Degré, A.; Long, H.; Zhang, S.; Lu, J.; Gao, L.; Zheng, F.; Liu, X.; et al. Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3-N distributions. Agric. Water Manag. 2021, 251, 106853. [Google Scholar] [CrossRef]
- Amer, K.H.; Midan, S.A.; Hatfield, J.L. Effect of deficit irrigation and fertilization on cucumber. Agron. J. 2009, 101, 1556–1564. [Google Scholar] [CrossRef]
- Nhantumbo, N.S. Residue Management Strategies for the Rainfed N-Deprived Maize-Legume Cropping Systems of Central Mozambique. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2016; 205p. [Google Scholar]
- Anderson, R.L. Are some crops synergistic to following crops? Agron. J. 2005, 97, 7–10. [Google Scholar] [CrossRef]
- Tomer, M.D.; Liebman, M. Nutrients in soil water under three rotational cropping systems, Iowa, USA. Agric. Ecosyst. Environ. 2014, 186, 105–114. [Google Scholar] [CrossRef]
- Kishan, K.; Rondla, S.K.; Kumar, K.S.; Naik, S. Effect of irrigation and N-fertigation levels on broccoli performance in a polynet house. Int. J. Environ. Clim. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Cui, B.J.; Niu, W.Q.; Du, Y.D.; Zhang, Q. Response of yield and nitrogen use efficiency to aerated irrigation and N application rate in greenhouse cucumber. Sci. Hortic. 2020, 265, 109220. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mbilinyi, B.P.; Mbungu, W.B.; Mourice, S.K.; Mahoo, H.F.; Schmitter, P. Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Sci. Hortic. 2021, 276, 109756. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Bartolo, M.E.; Reule, C.A.; Berrada, A. Nitrogen effects on onion yield under drip and furrow irrigation. Agron. J. 2008, 100, 1062–1069. [Google Scholar] [CrossRef]
- Piri, H.; Naserin, A. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Sci. Hortic. 2020, 268, 109361. [Google Scholar] [CrossRef]
- Hamad, A.A.A.; Wei, Q.; Wan, L.; Xu, J.; Hamoud, Y.A.; Li, Y.; Shaghaleh, H. Subsurface drip irrigation with emitters placed at suitable depth can mitigate N2O emissions and enhance Chinese cabbage yield under greenhouse cultivation. Agronomy 2022, 12, 745. [Google Scholar] [CrossRef]
- Ohnishi, M.; Horie, T.; Homma, K.; Supapoj, N.; Takano, H.; Yamamoto, S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crop. Res. 1999, 64, 109–120. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; 889p. [Google Scholar]
- Sanginga, D.A. Effects of Potassium and Magnesium on Cassava Vegetative and Root Yield. Master’s Thesis, University of Eldoret, Eldoret, Kenya, 2022; 101p. [Google Scholar]
- Gholamnejad, S.; Haghighi, M.; Etemadi, N.; Pessarakli, M. The effects of N-NO3: N-NH4 ratios and calcium concentration of the nutrient solution on the growth parameters and partitioning of nitrogen and calcium in tomato plants (Solanum lycopersicum L.). J. Plant Nutr. 2023, 46, 2827–2840. [Google Scholar] [CrossRef]
- Fenn, L.B.; Taylor, R.M. Calcium stimulation of ammonium absorption in radish. Agron. J. 1990, 82, 81–84. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Sanginga, N.; Woomer, P.L. (Eds.) Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Process; Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, CIAT: Nairobi, Kenya, 2009; 263p. [Google Scholar]
- Dufault, R.J. Relationship among nitrogen, phosphorus, and potassium fertility regimes on celery transplant growth. HortScience 1985, 20, 1104–1106. [Google Scholar] [CrossRef]
- Sabatino, L.; La Bella, S.; Ntatsi, G.; Iapichino, G.; D’Anna, F.; De Pasquale, C.; Consentino, B.B.; Rouphael, Y. Selenium biofortification and grafting modulate plant performance and functional features of cherry tomato grown in a soilless system. Sci. Hortic. 2021, 285, 110095. [Google Scholar] [CrossRef]
- Carucci, F.; Gatta, G.; Gagliardi, A.; De Vita, P.; Bregaglio, S.; Giuliani, M.M. Agronomic strategies to improve N efficiency indices in organic durum wheat grown in Mediterranean area. Plants 2021, 10, 2444. [Google Scholar] [CrossRef] [PubMed]
- Przygocka-Cyna, K.; Barłóg, P.; Grzebisz, W.; Spiżewski, T. Onion (Allium cepa L.) yield and growth dynamics response to in-season patterns of nitrogen and sulfur uptake. Agronomy 2020, 10, 1146. [Google Scholar] [CrossRef]
- El Amerany, F.; Rhazi, M.; Wahbi, S.; Taourirte, M.; Meddich, A. The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci. Hortic. 2020, 261, 109015. [Google Scholar] [CrossRef]
- Moustaka, J.; Moustakas, M. Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. Biosensors 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Lone, J.K.; Pandey, R.; Mondal, N.; Dhandapani, R.; Meena, S.K.; Khan, S. Insights into morphological and physio-biochemical adaptive responses in mungbean (Vigna radiata L.) under heat stress. Front. Genet. 2023, 14, 1206451. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Moran, J.F. Can ammonium stress be positive for plant performance? Front. Plant Sci. 2019, 10, 1103. [Google Scholar] [CrossRef]
- Nazir, F.; Mahajan, M.; Khatoon, S.; Albaqami, M.; Ashfaque, F.; Chhillar, H.; Chopra, P.; Khan, M.I.R. Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. Front. Plant Sc. 2023, 14, 1087946. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Z.P.; Shao, M.A.; Dyckmans, J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ. Exp. Bot. 2000, 44, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Sassi-Aydi, S.; Aydi, S.; Abdelly, C. Inorganic nitrogen nutrition enhances osmotic stress tolerance in Phaseolus vulgaris: Lessons from a drought-sensitive cultivar. HortScience 2014, 49, 550–555. [Google Scholar] [CrossRef]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.-C. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Shah, S.; Tian, H. The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops—A review. Agronomy 2022, 12, 2191. [Google Scholar] [CrossRef]
- Wang, R.; Zeng, J.; Chen, K.; Ding, Q.; Shen, Q.; Wang, M.; Guo, S. Nitrogen improves plant cooling capacity under increased environmental temperature. Plant Soil 2022, 472, 329–344. [Google Scholar] [CrossRef]
- Tripathi, R.; Tewari, R.; Singh, K.P.; Keswani, C.; Minkina, T.; Srivastava, A.K.; De Corato, U.; Sansinenea, E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 2022, 13, 883970. [Google Scholar] [CrossRef]
- Aigu, Y.; Daval, S.; Gazengel, K.; Marnet, N.; Lariagon, C.; Laperche, A.; Legeai, F.; Manzanares-Dauleux, M.J.; Gravot, A. Multi-omic investigation of low-nitrogen conditional resistance to clubroot reveals Brassica napus genes involved in nitrate assimilation. Front. Plant Sci. 2022, 13, 790563. [Google Scholar] [CrossRef]
- Reglinski, T.; Havis, N.; Rees, H.J.; de Jong, H. The practical role of induced resistance for crop protection. Phytopathology 2023, 113, 719–731. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the roles of nitrogen nutrition in plant disease defencess. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef]
- Van de Waal, D.B.; White, L.A.; Everett, R.; Asik, L.; Borer, E.T.; Frenken, T.; González, A.L.; Paseka, R.; Seabloom, E.W.; Strauss, A.T.; et al. Reconciling contrasting effects of nitrogen on host immunity and pathogen transmission using stoichiometric models. Ecology 2023, 104, e4170. [Google Scholar] [CrossRef]
- Simone, G.W. Disease Control in Celery (Apium graveolens var. dulce); PDMG-V3-36; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 1999. [Google Scholar]
- Howard, R.J.; Garland, J.A.; Seaman, W.L. Greenhouse tomato. In Diseases and Pests of Vegetable Crops in Canada: An Illustrated Compendium; Howard, R.J., Garland, J.A., Seaman, W.L., Eds.; The Canadian Phytopathological Society, M.O.M. Printing Ltd.: Ottawa, ON, Canada, 1994; pp. 474–497. [Google Scholar]
- FAO. Eggplant Integrated Pest Management—An Ecological Guide; FAO Intercountry Programme for Integrated Pest Management in Vegetables in South and South East Asia: Rome, Italy, 2003; 182p.
- Abuley, I.K.; Nielsen, B.J.; Hansen, H.H. The influence of timing the application of nitrogen fertilizer on early blight (Alternaria solani). Pest Manag. Sci. 2019, 75, 1150–1158. [Google Scholar] [CrossRef]
- Ries, S.M. Strawberry Leaf Diseases; RPD No. 702; University of Illinois Urbana-Champaign Cooperative Extension Service: Champaign, IL, USA, 1996; 6p. [Google Scholar]
- Harrington, E.; Good, G. Crop Profile for Strawberries in New York; USDA, National IPM Database; USDA-CSREES-Pest Management Alternatives Program: Washington, DC, USA, 2000.
- Guo, Z.; Luo, C.; Dong, Y.; Dong, K.; Zhu, J.; Ma, L. Effect of nitrogen regulation on the epidemic characteristics of intercropping faba bean rust disease primarily depends on the canopy microclimate and nitrogen nutrition. Field Crop. Res. 2021, 274, 108339. [Google Scholar] [CrossRef]
- Kucharek, T.; Bartz, J. Bacterial Soft Rots of Vegetables and Agronomic Crops; PP-12; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 1999. [Google Scholar]
- Schwartz, H.F. Botrytis, Downy Mildew, and Purple Blotch of Onion; Crop Series, Diseases No. 2.941; Colorado State University Cooperative Extension Service: Fort Collins, CO, USA, 2004. [Google Scholar]
- Jansson, R.K.; Smilowitz, Z. Influence of nitrogen on population parameters of potato insects: Abundance, population growth, and within-plant distribution of the green peach aphid, Myzus persicae (Homoptera: Aphididae). Environ. Entomol. 1986, 15, 49–55. [Google Scholar] [CrossRef]
- Chen, Y.; Ruberson, J.R. Impact of variable nitrogen fertilisation on arthropods in cotton in Georgia, USA. Agric. Ecosyst. Environ. 2008, 126, 281–288. [Google Scholar] [CrossRef]
- Jansson, R.K.; Leibee, G.L.; Sanchez, C.A.; Lecrone, S.H. Effects of nitrogen and foliar biomass on population parameters of cabbage insects. Entomol. Exp. Appl. 1991, 61, 7–16. [Google Scholar] [CrossRef]
- Barroga, G.F.; Bernardo, E.N. Biology, feeding behavior and damage of the cotton leafhopper (Amrasca biguttula (Ishida)) on susceptible and resistant varieties of okra (Abelmoschus esculentus (L.) Moench.). Philipp. Entomol. 1993, 9, 186–200. [Google Scholar]
- Leroux, E.J. The Effect of Various Levels of Nitrogen, Phosphorus and Potassium on the Fecundity of the Two-Spotted Spider Mite Tetranychus bimaculatus Harvey. Master’s Thesis, McGill University, Montreal, QC, Canada, 1952; 118p. Available online: https://escholarship.mcgill.ca/concern/theses/0k225f384 (accessed on 25 November 2023).
- Alizade, M.; Hosseini, M.; Awal, M.M.; Goldani, M.; Hosseini, A. Effects of nitrogen fertilization on population growth of two-spotted spider mite. Syst. Appl. Acarol. 2016, 21, 947–956. Available online: http://www.bioone.org/doi/full/10.11158/saa.21.7.8 (accessed on 25 November 2023).
- Hilje, L.; Costa, H.S.; Stansly, P.A. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop. Prot. 2001, 20, 801–812. [Google Scholar] [CrossRef]
- Perring, T.M.; Stansly, P.A.; Liu, T.X.; Smith, H.A.; Andreason, S.A. Whiteflies: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato; Wakil, W., Brust, G.E., Perring, T.M., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018; pp. 73–110. [Google Scholar] [CrossRef]
- Hu, X.F.; Cheng, C.; Luo, F.; Chang, Y.Y.; Teng, Q.; Men, D.Y.; Liu, L.; Yang, M.Y. Effects of different fertilization practices on the incidence of rice pests and diseases: A three-year case study in Shanghai, in subtropical southeastern China. Field Crop. Res. 2016, 196, 33–50. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Evans, S.P.; Blankenship, E.E.; Van Acker, R.C.; Lindquist, J.L. Critical period for weed control: The concept and data analysis. Weed Sci. 2002, 50, 773–786. [Google Scholar] [CrossRef]
- Whitbread, A.M.; Robertson, M.J.; Carberry, P.S.; Dimes, J.P. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. Eur. J. Agron. 2010, 32, 51–58. [Google Scholar] [CrossRef]
- Mekdad, A.A.; El-Enin, M.M.A.; Rady, M.M.; Hassan, F.A.; Ali, E.F.; Shaaban, A. Impact of level of nitrogen fertilization and critical period for weed control in peanut (Arachis hypogaea L.). Agronomy 2021, 11, 909. [Google Scholar] [CrossRef]
- Laude, S. Competitiveness of tomato (Lycopersicon esculentum Mill.) with weeds at various nitrogen doses and weed free periods. In Earth and Environmental Science, Proceedings of the 3rd International Conference on Environmental Ecology of Food Security, Palu, Indonesia, 14–16 February 2023; IOP Publishing: Bristol, UK, 2023; Volume 1253, p. 012030. [Google Scholar] [CrossRef]
- Di Tomaso, J.M. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 1995, 43, 491–497. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; AhaAlikhani, M.; Sanavy, S.M.; Mirlatifi, S.M. Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching. Agric. Water Manag. 2013, 126, 9–18. [Google Scholar] [CrossRef]
- Li, Y.; Zou, N.; Liang, X.; Zhou, X.; Guo, S.; Wang, Y.; Qin, X.; Tian, Y.; Lin, J. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front. Microbiol. 2023, 13, 1070817. [Google Scholar] [CrossRef]
- Brennan, E.B.; Acosta-Martinez, V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem. 2017, 109, 188–204. [Google Scholar] [CrossRef]
- Pacovsky, R.S.; Fuller, G.; Stafford, A.E.; Paul, E.A. Nutrient and growth interactions in soybeans colonized with Glomus fasciculatum and Rhizobium japonicum. Plant Soil 1986, 92, 37–45. [Google Scholar] [CrossRef]
- He, X.H.; Critchley, C.; Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 2003, 22, 531–567. [Google Scholar] [CrossRef]
- Loo, W.T.; Chua, K.-O.; Mazumdar, P.; Cheng, A.; Osman, N.; Harikrishna, J.A. Arbuscular mycorrhizal symbiosis: A strategy for mitigating the impacts of climate change on tropical legume crops. Plants 2022, 11, 2875. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.A.; El-Tohamy, W.A.; Abou-Hussein, S.D.; Gruda, N.S. Deficit irrigation and arbuscular mycorrhiza as a water-saving strategy for eggplant production. Horticulturae 2020, 6, 45. [Google Scholar] [CrossRef]
- Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial inoculants for soil quality and plant health. In Sustainable Agriculture Reviews, 22; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; pp. 281–307. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 2008, 54, 876–886. [Google Scholar] [CrossRef]
- Ntsefong, G.N.; Toukam, G.M.S.; Mbi, K.T.; Getachew, S.E.; Yaouba, A.; Ali, S.M.; Kinge, T.R.; Teke, G.N. Unleashing the power of beneficial microorganisms for advancing crop improvement: An in-depth review. Preprints 2023, 2, 2023100050. [Google Scholar] [CrossRef]
- Canfora, L.; Costa, C.; Pallottino, F.; Mocali, S. Trends in soil microbial inoculants research: A science mapping approach to unravel strengths and weaknesses of their application. Agriculture 2021, 11, 158. [Google Scholar] [CrossRef]
- Scheu, S.; Schlitt, N.; Tiunov, A.V.; Newington, J.E.; Jones, H.T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 2002, 133, 254–260. [Google Scholar] [CrossRef]
- Valenzuela, H. Earthworms in the farm. In Hanai’Ai, The Food Provider, CTAHR Sustainable Agriculture Newsletter; University of Hawaii Cooperative Extension Service: Honolulu, HI, USA, 2010. [Google Scholar]
- Fonte, S.J.; Hsieh, M.; Mueller, N.D. Earthworms contribute significantly to global food production. Nat. Commun. 2023, 14, 5713. [Google Scholar] [CrossRef] [PubMed]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.; Brown, G.G.; De Deyn, G.B.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Li, X.; Christie, P.; Dou, Z.; Zhang, J.; Xiang, D. Impact of the earthworm Aporrectodea trapezoides and the arbuscular mycorrhizal fungus Glomus intraradices on 15 N uptake by maize from wheat straw. Biol. Fertil. Soils 2013, 49, 263–271. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Josa, A.; Muñoz, P.; Gassó, S.; Rieradevall, J.; Gabarrell, X. Applying nutrient dynamics to adjust the nutrient-water balance in hydroponic crops. A case study with open hydroponic tomato crops from Barcelona. Sci. Hortic. 2020, 261, 108908. [Google Scholar] [CrossRef]
- Rosa, L.; Gabrielli, P. Achieving net-zero emissions in agriculture: A review. Environ. Res. Lett. 2023, 18, 063002. [Google Scholar] [CrossRef]
- Davidson, E.A.; Suddick, E.C.; Rice, C.W.; Prokopy, L.S. More food, low pollution (Mo Fo Lo Po): A grand challenge for the 21st century. J. Environ. Qual. 2015, 44, 305–311. [Google Scholar] [CrossRef]
- Reimer, A.; Doll, J.E.; Boring, T.J.; Zimnicki, T. Scaling up conservation agriculture: An exploration of challenges and opportunities through a stakeholder engagement process. J. Environ. Qual. 2022, 52, 465–475. [Google Scholar] [CrossRef]
- Oelmann, Y.; Lange, M.; Leimer, S.; Roscher, C.; Aburto, F.; Alt, F.; Bange, N.; Berner, D.; Boch, S.; Boeddinghaus, R.S.; et al. Above-and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat. Commun. 2021, 12, 4431. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.; Shennan, C.; Brown, M. Food Safety versus Environmental Protection on the Central California Coast: Exploring the Science behind an Apparent Conflict; Research Brief No. 10; University of California at Santa Cruz, The Center for Agroecology & Sustainable Food Systems: Santa Cruz, CA, USA, 2006; 12p. [Google Scholar]
- Zhu, Y.; Zhang, H.; Li, R.; Zhu, W.; Kang, Y. Nitrogen fertigation affects crop yield, nitrogen loss and gaseous emissions: A meta-analysis. Nutr. Cycl. Agroecosyst. 2023, 127, 359–373. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Chang. Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
Term | Definition | Sources |
---|---|---|
Nitrogen Use Efficiency (NUE) | Proportion of applied fertilizer N that is recovered by the current crop; A product of N uptake and utilization efficiency. | [32,40,41] |
N recovery efficiency (REN) | N harvested in marketable product (dry weight) as a proportion of external N inputs. | [19,40,42] |
Percent Apparent N recovery | Total above-ground N uptake at maturity at a given N fertilizer rate minus uptake at zero N-rate, divided by the amount of N applied. | [19,32,43] |
Ndff | Nitrogen derived from fertilizer. | [19,44] |
NFUE | N fertilizer use efficiency = (N derived from fertilizer/ applied N rate) × 100 | [44,45] |
Agronomic NUE | Harvestable biomass production divided by unit of available N (soils and fertilizers); Provides an economic benefit/cost ratio of added rates of N fertilizer. | [12,41,46] |
N utilization efficiency (NUtE) | Amount of marketable product per unit taken up by the crop and utilized via remobilization and assimilation. | [12,41,47] |
N uptake efficiency (NUpE) | Unit of N taken by the plant divided by unit of N available in the soil. | [41,46,47] |
N harvest index (NHI) | Ratio of N in harvestable product divided by the total crop N. | [46,48] |
N balance | Term used to determine the amount of fertilizer N (Nfert) to apply, calculated as Nfert = Noutputs − Ninputs. | [26] |
N budget | Assessment of the major N inputs and outputs on a farm. | [49] |
Crop | NUE (%) | Region | Sources |
---|---|---|---|
Cereals (maize, rice, wheat) | 26–35 | China, commercial production, under high N application rates | [38,77] |
Maize, Zea mays | 36–46 | Global; USA; reported range values | [30,37,56,78] |
Rice, Oryza sativa | 29–42 | Global; reported range values | [37,56] |
Wheat, Triticum aestivum; Rice | 38–42 | Global; reported range values | [37,56] |
Cabbage, head, Brassica oleracea var. capitata | 27–55 | Average 40%, Florida | [79] |
Cucumber, Cucumis sativus; bell pepper, Capsicum annuum; tomato, Solanum lycopersicon | 54–61 | Greenhouse fertigation, The Netherlands | [80] |
Onion, Allium cepa | 30–40; 10–26 | The Netherlands; Colorado, Idaho, USA, varied by timing and method of application | [44,81] |
Peppers, bell, Capsicum annuum | 30–50 | Florida | [82] |
Potato, Solanum tuberosum | 40–77; 27–37; 40–60 | Range for Low N vs. high N rates; The Netherlands; Florida; Minnesota | [12,68,83] |
Tomato, Solanum lycopersicon | 15.4 (12 spring; 32 fall) | Sandy soils, Florida, 15N study | [19,84] |
Lettuce, Lactuca sativa | 12–25 | For high (180) and low (60 kg Ha−1) N application rates | [55] |
Crop | Notes | References |
---|---|---|
Cabbage, head, Brassica oleracea var. capitata | Evaluation of N harvest index, and selection criteria of growth parameters | [46] |
Cassava, Manihot esculenta | Genotype with improved N uptake was identified among 25 accessions, under low N conditions; Molecular analysis identified mechanisms for possible improved N uptake in efficient lines | [18,122] |
Eggplant, Solanum melongena | NUE efficient genotypes identified from germplasm collections and crosses | [116,123] |
Lettuce, Lactuca sativa | Evaluation of wild species, plasticity in response to environmental variables | [46] |
Onion, Allium cepa | NUE evaluation of landraces | [118] |
Potato, Solanum tuberosum | Identification of growth traits associated with NUE among a range of potato cultivars; Differential cultivar responses to N rates; cultivar selection and N efficiency under organic systems | [12,46,83,124] |
Spinach, Spinacea oleracea | Identification of QTLs for NUE | [46] |
Tomato, Solanum lycopersicon | High-NUE genotype identified among 14 landrace varieties; wild relative genotype identified with increased NUE under low N rates; Genotypes with improved NUE with potential use as rootstocks; greater N uptake in drought-tolerant cultivars | [115,119,125,126] |
Research Protocol | Notes | References |
---|---|---|
Studies on N cycle at a farm and landscape level | China; long-term rotation, Europe; Organic systems, California, USA; Canada | [127,128,129,130] |
Nutrient budget or balance studies | Oregon; Balance (organic systems); Europe; Canada; Florida | [26,49,64,131,132,133] |
Timing of application (uptake patterns) | Oregon; Montana | [64,134] |
Calibration (growth N response curves) | At experiment station or on-farm trials; Oregon | [64,135,136] |
Soil and tissue analysis | Includes soil nitrate testing, Oregon; Brazil; Florida; plant monitoring, e.g., chlorophyll meters, petiole NO3−1 sap analysis, canopy sensors | [26,64,137,138,139] |
Placement of fertilizers | Montana; Europe | [24,134] |
N fertigation guides | Greenhouse; Europe; India | [23,24,74,80,140] |
Modeling, crop models, decision support systems (DSSs) | Onions, Brazil; Europe; Florida; Organic rotations and N budget, UK | [24,26,138,141,142] |
Use of optical sensors | Maine | [143] |
Adoption of integrated or best management practices (BMPs) | Oregon; Europe; Florida | [19,24,26,50,64,82] |
Crop | N Uptake (Kg Ha−1) | Notes | References |
---|---|---|---|
Broccoli, Brassica oleracea var. Italica group | 50–90 | Oregon, USA | [64] |
Brussel sprouts, Brassica oleracea var. Gemmifera | 170 | Organic, Europe | [61] |
Cabbage, head, Brassica oleracea var. capitata | 130–230 | Europe | [46] |
Cassava, Manihot esculenta | 124 (55–62 roots, 202 entire plant) | Tropics | [88] |
Lettuce, Lactuca sativa | 105; 100–110 | Organic, Europe; California | [46,61] |
Onion, Allium cepa | 60–120, 160 | Oregon, California, USA; Brazil | [62,64,144] |
Potato, Solanum tuberosum | 130; 80–130; 220 | Organic, Europe; Oregon, USA; California, USA | [46,61,64] |
Spinach, Spinacea oleracea | 20–90 | Leafy baby and processing, California, USA | [46] |
Tomato, Solanum lycopersicon | 3.9–4.4 (fruit) 51.8–72.2 (whole plant) | Florida, USA | [19] |
Crop | Application Rate (Kg Ha−1) | Comments | References |
---|---|---|---|
Cabbage, head, Brassica oleracea var. capitata | 220–350 | Europe | [46] |
Carrot, Daucus carota | 120; 100–150 | California, 110–116-day season; California (Oxnard); Florida, sandy soils | [145,146] |
Celery, Apium graveolens | 200–400 | California | [147,148] |
Cucurbits | 60–100; 90–170 (summer squash); 150 | Wisconsin; California; Florida | [149,150,151] |
Lettuce, Lactuca sativa | 120–220 | Europe | [46] |
Onion, Allium cepa | 170–200; 200; | Pennsylvania and Utah; Washington State | [118,152,153,154] |
Pepper, Capsicum annuum | 150–200; 200–240; 300 | Georgia; Florida, higher rates with extended season; Puerto Rico | [63,82,155] |
Potato, Solanum tuberosum | 120–180; 150–250; 200–250; 250–300 | California; Florida | [12,46,68,147] |
Spinach, Spinacea oleracea | 140–290 | Europe | [46] |
Tomato, Solanum lycopersicon | 110–225 (plus weekly maintenance applications of 10 kg for staked tomatoes); 160–200 | California, fresh market; Florida and Eastern USA | [19,156,157,158] |
Production Practice | Notes | References |
---|---|---|
Optimize N application rates based on crop demand | Improved NUE | [27,82,164] |
Selection of adapted crop varieties | Potato and lettuce germplasm; Selection for roots systems with improved N uptake | [124,165,166] |
Controlled- or slow-release fertilizers | Utilizing nitrification inhibitors, which is not cost-effective in some systems | [24,68,81,167,168] |
Combined use of organic and chemical fertilizers | Improved NUE, soil fertility, and use of local resources | [27,169] |
Placement of fertilizers | Field placement including subsurface drip fertigation | [24,81,164,170,171] |
Planting density, spacing | Spacing x N response interaction, onions, tomato | [172,173,174,175] |
Plasticulture systems and fertigation | Improved NUE | [65,158,170,176,177] |
Timing of application to synchronize with crop uptake demand | Tomato, onion, including split applications | [19,23,45,58] |
Precision farming | Assessment of yield variations across a field; N status monitoring systems; may not be cost-effective in some systems or for small-scale production | [159,178,179] |
Grafting | Improved NUE, melons, tomato | [26,125,180] |
Production Practice | Notes | Source |
---|---|---|
Organic systems | Lower surplus N levels in organic systems, improved NUE | [132,189] |
Legume-based rotations | A more balanced N budget, improved N cycles | [29,191] |
Organic amendments | Locally available, a source of N, and improve soil organic matter; serve as a slow-release source of N | [8,24] |
Cover crops | Soil fertility and improved N cycles | [24,199,200] |
Intercropping systems | Improved N cycling, NUE, soil microbial interactions | [24,201,202,203,204] |
Integrated crop–livestock/aquaculture systems | Improved nutrient cycling, economic diversification, resilient systems | [29,205] |
Agroforestry/alley cropping | Improved nutrient cycling, reduced N losses | [206,207,208] |
Interaction Variable | Notes | References |
---|---|---|
Crop responses to N x water interactions | Broccoli (tunnels), Cabbage; Greenhouse cucumbers; African eggplant (Solanum aethiopicum L,); Onions; tomato | [239,245,246,247,249,250] |
Cultivar selection | Selection of early maturing cultivars during drought periods | [251] |
Fertigation | Improved NUE | [24,171,238] |
Irrigation system selection | Effect on moisture uniformity, WUE x N x yields | [231,249] |
Irrigation rates and timing | Irrigation x N interaction | [239] |
Organic Mulches | Reduced evapotranspiration and erosion; moderates soil temperature and moisture; N cycling | [43,242] |
Plastic mulches | Reduced evapotranspiration and erosion; moderates soil temperature and moisture | [43,69] |
Rotations | Water and NUE | [243,244] |
Tillage | Moisture retention under no-till farming and NUE | [235] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, H. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen 2024, 5, 106-143. https://doi.org/10.3390/nitrogen5010008
Valenzuela H. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen. 2024; 5(1):106-143. https://doi.org/10.3390/nitrogen5010008
Chicago/Turabian StyleValenzuela, Hector. 2024. "Optimizing the Nitrogen Use Efficiency in Vegetable Crops" Nitrogen 5, no. 1: 106-143. https://doi.org/10.3390/nitrogen5010008
APA StyleValenzuela, H. (2024). Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen, 5(1), 106-143. https://doi.org/10.3390/nitrogen5010008