Organic Nitrogen Forms in Soils Treated with Cattle Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Manure Characterization
2.2. Greenhouse Trail
2.3. Soil Analysis
2.4. Statistical Analysis of Data
3. Results
3.1. Chemical Attributes of the Soil
3.2. Forms of Organic N in Soils
3.3. Relationships between N Forms and Soil Attributes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martins, M.M.; Spolador, H.F.S.; Njuki, E. Production Environment and Managerial Techniques in Explaining Productivity Growth in Brazilian Beef Cattle Production. Agribusiness 2022, 38, 371–385. [Google Scholar] [CrossRef]
- Dalias, P.; Christou, A. Nitrogen Supplying Capacity of Animal Manures to the Soil in Relation to the Length of Their Storage. Nitrogen 2020, 1, 52–66. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Ding, X.; Liu, L.; Wu, L.; Zhang, S. Effects of Organic Fertilization on Phosphorus Availability and Crop Growth: Evidence from a 7-Year Fertilization Experiment. Arch. Agron. Soil Sci. 2023, 69, 2092–2103. [Google Scholar] [CrossRef]
- Impraim, R.; Weatherley, A.; Chen, D.; Suter, H. Effect of Lignite Amendment on Carbon and Nitrogen Mineralization from Raw and Composted Manure during Incubation with Soil. Pedosphere 2022, 32, 785–795. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Besga, G.; Ojinaga, M.; Aizpurua, A. Influence of Wheat Crop on Carbon and Nitrogen Mineralization Dynamics after the Application of Livestock Manures. Geoderma 2021, 402, 115351. [Google Scholar] [CrossRef]
- Miranda-Vélez, J.F.; Vogeler, I. Exploring Temperature-Related Effects in Catch Crop Net N Mineralization Outside of First-Order Kinetics. Nitrogen 2021, 2, 110–127. [Google Scholar] [CrossRef]
- Whalen, J.K.; Thomas, B.W.; Sharifi, M. Novel Practices and Smart Technologies to Maximize the Nitrogen Fertilizer Value of Manure for Crop Production in Cold Humid Temperate Regions. Adv. Agron. 2019, 153, 1–85. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A. Diffusion Methods to Determine Different Forms of Nitrogen in Soil Hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Stevenson, F.J. Nitrogen-Organic Forms. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1185–1200. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014; ISBN 0926487221.
- Embrapa. Sistema Brasileiro de Classificação de Solos, 3rd ed.; dos Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., dos Oliveira, V.Á., de Lumbreras, J.F., Coelho, M.R., de Almeida, J.A., Cunha, T.J.F., de Oliveira, J.B., Eds.; Embrapa: Brasília, Brazil, 2013; ISBN 85-85864-19-2. [Google Scholar]
- Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação Da Fertilidade de Solos Tropiciais; van Raij, B., de Andrade, J.C., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Cantarella, H.; Trivelin, P.C.O. Determinação de Nitrogênio Inorgânico Em Solo Pelo Método Da Destilação a Vapor. In Análise Química para Avaliação da Fertilidade de Solos Tropicais; van Raij, B., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 2001; pp. 270–276. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos Do Instituto Agronômico de Campinas; Instituto Agronômico: Campinas, Brazil, 2009; Volume 106. [Google Scholar]
- Roberts, T.L.; Norman, R.J.; Slaton, N.A.; Wilson, C.E.; Ross, W.J.; Bushong, J.T. Direct Steam Distillation as an Alternative to the Illinois Soil Nitrogen Test. Soil Sci. Soc. Am. J. 2009, 73, 1268–1275. [Google Scholar] [CrossRef]
- Brasil Instrução Normativa SDA N° 28, de 27 de Julho de 2007. In Diário Oficial da União; Imprensa Nacional: Brasília, Brazil, 2007; p. 11.
- Mulvaney, R.L.; Khan, S.A.; Hoeft, R.G.; Brown, H.M. A Soil Organic Nitrogen Fraction That Reduces the Need for Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1164–1172. [Google Scholar] [CrossRef]
- de Campos, F.P.; Nussio, C.M.B.; Nussio, L.G. (Eds.) Métodos de Análise de Alimentos; FEALQ: Piracicaba, Brazil, 2004. [Google Scholar]
- Braos, L.B.; Carlos, R.S.; Bettiol, A.C.T.; Bergamasco, M.A.M.; Terçariol, M.C.; Ferreira, M.E.; da Cruz, M.C.P. Soil Carbon and Nitrogen Forms and Their Relationship with Nitrogen Availability Affected by Cover Crop Species and Nitrogen Fertilizer Doses. Nitrogen 2023, 4, 85–101. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Pu, S.; Blagodatskaya, E.; Kuzyakov, Y.; Razavi, B.S. Impact of Manure on Soil Biochemical Properties: A Global Synthesis. Sci. Total Environ. 2020, 745, 141003. [Google Scholar] [CrossRef] [PubMed]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle Manure Amendments Can Increase the PH of Acid Soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal Manure Application and Soil Organic Carbon Stocks: A Meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept. Glob. Chang. Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef]
- Braos, B.B.; Ferreira, M.E.; da Cruz, M.C.P.; Braos, L.B.; Barbosa, J.C. Mild and Moderate Extraction Methods to Assess Potentially Available Soil Organic Nitrogen. Rev. Bras. Ciência Solo 2016, 40, e0151059. [Google Scholar] [CrossRef]
- Braos, L.B.; Carlos, R.S.; Kuhnen, F.; Ferreira, M.E.; Mulvaney, R.L.; Khan, S.A.; Cruz, M.C.P. Predicting Soil Nitrogen Availability for Maize Production in Brazil. Nitrogen 2022, 3, 555–568. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors Affecting Nitrification in Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef]
- Bergamasco, M.A.M.; Braos, L.B.; Guidini Lopes, I.; Cruz, M.C.P. Nitrogen Mineralization and Nitrification in Two Soils with Different PH Levels. Commun. Soil Sci. Plant Anal. 2019, 50, 2873–2880. [Google Scholar] [CrossRef]
- Roberts, T.L.; Norman, R.J.; Slaton, N.A.; Wilson, C.E. Changes in Alkaline Hydrolyzable Nitrogen Distribution with Soil Depth: Fertilizer Correlation and Calibration Implications. Soil Sci. Soc. Am. J. 2009, 73, 2151–2158. [Google Scholar] [CrossRef]
- Otto, R.; Mulvaney, R.L.; Khan, S.A.; Trivelin, P.C.O. Quantifying Soil Nitrogen Mineralization to Improve Fertilizer Nitrogen Management of Sugarcane. Biol. Fertil. Soils 2013, 49, 893–904. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Hoeft, R.G. A Simple Soil Test for Detecting Sites That Are Nonresponsive to Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1751. [Google Scholar] [CrossRef]
- Bettiol, A.C.T.; Braos, L.B.; Lopes, I.G.; Andriolli, I.; Ferreira, M.E.; Cruz, M.C.P. Evaluation of Potentially Available Nitrogen by Biological and Chemical Methods in Soil Cultivated with Maize in Succession to Cover Crops. J. Plant Nutr. 2021, 45, 1919–1932. [Google Scholar] [CrossRef]
- Stevenson, F. Humus Chemistry; John Willet & Sons: New York, NY, USA, 1994; ISBN 9780471594741. [Google Scholar]
- Ros, G.H.; Hanegraaf, M.C.; Hoffland, E.; van Riemsdijk, W.H. Predicting Soil N Mineralization: Relevance of Organic Matter Fractions and Soil Properties. Soil Biol. Biochem. 2011, 43, 1714–1722. [Google Scholar] [CrossRef]
Soil (1) | Organic C (2) | Resin P | pH CaCl2 | K+ | Ca2+ | Mg2+ | H + Al | CEC | BS |
---|---|---|---|---|---|---|---|---|---|
g dm−3 | mg dm−3 | mMc dm−3 | % | ||||||
LV | 15 | 6 | 5.1 | 1.8 | 22 | 14 | 26 | 64 | 59 |
PVA | 14 | 13 | 4.2 | 4.2 | 11 | 6 | 34 | 55 | 38 |
Soil (1) | Total N | N-NH4+ | N-NO3− | N-DSD | Sand | Silt | Clay | Soil Texture |
---|---|---|---|---|---|---|---|---|
mg kg−1 | g kg−1 | |||||||
LV | 1184 | 13.7 | 0.68 | 148.8 | 450 | 110 | 440 | Clay |
PVA | 827 | 18.6 | 0.89 | 140.5 | 840 | 40 | 120 | Loamy Sand |
Soil (1) | N-HA (2) | N-AS | N-AA | N-HU | N-HT | N-AI |
---|---|---|---|---|---|---|
mg kg−1 | ||||||
LV | 120.26 | 254.30 | 60.20 | 205.86 | 650.00 | 122.42 |
PVA | 112.21 | 201.03 | 3.51 | 234.95 | 552.69 | 37.13 |
SV (1) | pH (2) | SOC | Total N | N-DSD | N-min | N-NH4+ | N-NO3− | N-HA | N-AS | N-AA | N-HU | N-HT | N-AI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil (S) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Manure (M) | ** | ** | ** | ** | ** | ns | ** | ** | ns | ** | ** | ** | ** |
Time (T) | ** | * | ns | ** | ** | ** | ** | ** | ** | ** | * | ns | ns |
S × M | * | * | ** | ns | ns | ** | ns | ** | ** | * | ** | ** | ns |
S × T | * | * | ns | ** | ** | ** | * | ns | ns | ** | ** | ** | ** |
M × T | ns | ns | ns | ** | ns | ns | ns | ** | ns | ** | ** | ** | ns |
S × M × T | ** | ns | ns | ** | ** | ** | ** | ** | ns | ** | ns | * | ** |
CV (%) (3) | 1.8 | 3.4 | 6.4 | 7.2 | 8.0 | 8.6 | 9.4 | 8.3 | 6.0 | 27.6 | 12.8 | 5.2 | 8.2 |
Manure | Incubation Days | pH CaCl2 (1) | SOC | Total N | N-DSD |
---|---|---|---|---|---|
Mg ha−1 | g kg−1 | mg kg−1 | |||
Clayey soil (LV) | |||||
0 (2) | 15 | 5.3 | 15.30 | 1111 | 99.9 |
45 | 5.3 | 15.20 | 1061 | 103.3 | |
90 | 5.4 | 14.64 | 1050 | 114.6 | |
180 | 5.3 | 14.40 | 1027 | 93.8 | |
Mean | 5.3 b | 14.89 b | 1062 b | 102.9 a | |
20 | 15 | 5.6 | 16.79 | 1215 | 165.7 |
45 | 5.7 | 17.11 | 1226 | 125.3 | |
90 | 5.7 | 17.11 | 1243 | 114.3 | |
180 | 5.3 | 16.02 | 1139 | 107.5 | |
Mean | 5.6 a | 16.76 a | 1206 a | 128.2 a | |
Mean LV | 5.4 A | 15.82 A | 1134 A | 115.5 A | |
Sandy soil (PVA) | |||||
0 | 15 | 4.8 | 12.48 | 722 | 69.6 |
45 | 4.6 | 13.03 | 718 | 60.2 | |
90 | 4.6 | 12.91 | 734 | 74.0 | |
180 | 4.5 | 13.23 | 721 | 66.2 | |
Mean | 4.6 b | 12.91 b | 724 a | 67.5 a | |
20 | 15 | 5.1 | 14.33 | 769 | 89.6 |
45 | 5.0 | 14.45 | 782 | 94.0 | |
90 | 5.1 | 14.28 | 740 | 95.9 | |
180 | 4.9 | 13.96 | 758 | 89.5 | |
Mean | 5.0 a | 14.26 a | 762 a | 92.2 a | |
Mean PVA | 4.8 B | 13.58 B | 743 B | 79.9 B |
Manure | Incubation Days | N-mineral (1) | N-NH4+ | N-NO3− |
---|---|---|---|---|
Mg ha−1 | mg kg−1 | |||
Clayey soil (LV) | ||||
0 (2) | 15 | 82.2 | 15.6 | 66.63 |
45 | 87.3 | 12.4 | 74.90 | |
90 | 86.0 | 11.3 | 74.73 | |
180 | 97.7 | 10.2 | 87.52 | |
Mean | 88.3 a (1) | 12.3 a | 75.95 a | |
20 | 15 | 81.8 | 12.4 | 69.33 |
45 | 85.8 | 11.4 | 74.40 | |
90 | 91.1 | 10.3 | 80.78 | |
180 | 121.7 | 12.7 | 109.05 | |
Mean | 95.1 a | 11.7 a | 83.39 | |
Mean LV | 91.7 A | 12.0 B | 79.67 A | |
Sandy soil (PVA) | ||||
0 | 15 | 50.8 | 17.6 | 33.23 |
45 | 59.3 | 12.6 | 46.74 | |
90 | 51.2 | 11.0 | 40.20 | |
180 | 75.4 | 10.5 | 64.85 | |
Mean | 59.2 a | 12.9 b | 46.26 a | |
20 | 15 | 67.2 | 21.0 | 46.20 |
45 | 76.0 | 15.3 | 60.70 | |
90 | 61.8 | 11.2 | 50.65 | |
180 | 77.9 | 10.8 | 67.17 | |
Mean | 70.7 a | 14.6 b | 54.18 a | |
Mean PVA | 65.0 B | 13.7 A | 51.22 B |
Manure Mg ha−1 | Incubation Days | N-HA (1) | N-AS | N-AA | N-HU | N-HT | N-AI |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Clayey soil (LV) | |||||||
0 | 15 | 86.7 | 279.6 | 80.1 | 174.3 | 620.7 | 170.6 |
45 | 74.3 | 263.1 | 92.5 | 167.0 | 596.0 | 209.7 | |
90 | 76.3 | 255.5 | 72.4 | 119.2 | 523.4 | 209.6 | |
180 | 57.4 | 277.4 | 70.2 | 168.9 | 574.0 | 192.2 | |
Mean | 73.7 b (2) | 268.9 b | 78.8 b | 157.4 b | 578.8 b | 195.5 a | |
20 | 15 | 78.9 | 300.9 | 55.6 | 406.4 | 841.8 | 217.0 |
45 | 92.8 | 294.5 | 55.5 | 316.2 | 759.1 | 204.4 | |
90 | 99.4 | 283.6 | 184.0 | 236.1 | 803.0 | 214.8 | |
180 | 88.6 | 309.4 | 105.0 | 296.8 | 799.7 | 196.3 | |
Mean | 89.9 a | 297.1 a | 100.0 a | 313.9 a | 800.9 a | 208.1 a | |
Mean LV | 81.8 B | 283.0 A | 89.4 A | 235.6 B | 689.8 A | 201.8 A | |
Sandy soil (PVA) | |||||||
0 | 15 | 74.8 | 175.2 | 2.4 | 214.6 | 467.0 | 99.1 |
45 | 79.0 | 170.8 | 7.8 | 314.0 | 571.3 | 60.8 | |
90 | 69.1 | 174.0 | 1.4 | 304.1 | 548.2 | 61.4 | |
180 | 86.2 | 171.6 | 7.3 | 262.4 | 527.6 | 72.9 | |
Mean | 77.3 b | 172.9 a | 4.7 a | 273.8 b | 528.5 b | 73.6 a | |
20 | 15 | 115.4 | 148.4 | 4.5 | 326.8 | 594.9 | 78.0 |
45 | 109.5 | 155.3 | 15.4 | 309.3 | 589.4 | 102.6 | |
90 | 126.6 | 138.8 | 11.5 | 323.6 | 597.5 | 85.9 | |
180 | 98.2 | 164.9 | 12.0 | 311.7 | 586.8 | 75.0 | |
Mean | 111.7 a | 151.8 b | 10.9 a | 317.8 a | 592.2 a | 85.4 a | |
Mean PVA | 94.5 a | 162.4 B | 7.8 B | 295.8 A | 560.3 B | 79.5 B |
N-HA | N-AS | N-AA | N-HT | N-HU | N-AI | Total N | N-DSD | SOC | pH | |
---|---|---|---|---|---|---|---|---|---|---|
N-AS (1) | −0.43 * | 1 | ||||||||
N-AA | −0.12 ns | 0.76 * | 1 | |||||||
N-HT | 0.15 ns | 0.66 * | 0.60 * | 1 | ||||||
N-HU | 0.40 * | −0.24 ns | −0.37 * | 0.47 * | 1 | |||||
N-AI | −0.29 * | 0.91 * | 0.80 * | 0.59 * | −0.33 * | 1 | ||||
Total N | −0.17 ns | 0.91 * | 0.78 * | 0.73 * | −0.15 ns | 0.92 * | 1 | |||
N-DSD | 0.06 ns | 0.67 * | 0.48 * | 0.73 * | 0.18 ns | 0.75 * | 0.77 * | 1 | ||
SOC | 0.15 ns | 0.73 * | 0.69 * | 0.84 * | 0.13 ns | 0.77 * | 0.87 * | 0.80 * | 1 | |
pH | 0.07 ns | 0.76 * | 0.70 * | 0.71 * | −0.06 ns | 0.86 * | 0.87 * | 0.82 * | 0.87 * | 1 |
N-min | −0.09 ns | 0.73 * | 0.67 * | 0.55 * | −0.21 ns | 0.70 * | 0.68 * | 0.47 * | 0.62 * | 0.58 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adame, C.R.; Carlos, R.S.; Braos, L.B.; Ferreira, M.E.; da Cruz, M.C.P. Organic Nitrogen Forms in Soils Treated with Cattle Manure. Nitrogen 2024, 5, 91-105. https://doi.org/10.3390/nitrogen5010007
Adame CR, Carlos RS, Braos LB, Ferreira ME, da Cruz MCP. Organic Nitrogen Forms in Soils Treated with Cattle Manure. Nitrogen. 2024; 5(1):91-105. https://doi.org/10.3390/nitrogen5010007
Chicago/Turabian StyleAdame, Cassia Rita, Roberta Souto Carlos, Lucas Boscov Braos, Manoel Evaristo Ferreira, and Mara Cristina Pessôa da Cruz. 2024. "Organic Nitrogen Forms in Soils Treated with Cattle Manure" Nitrogen 5, no. 1: 91-105. https://doi.org/10.3390/nitrogen5010007
APA StyleAdame, C. R., Carlos, R. S., Braos, L. B., Ferreira, M. E., & da Cruz, M. C. P. (2024). Organic Nitrogen Forms in Soils Treated with Cattle Manure. Nitrogen, 5(1), 91-105. https://doi.org/10.3390/nitrogen5010007