Boosting Crop Growth Rates of Hybrid Rice (Pukhraj) through Synergistic Use of Organic Nitrogen Sources in Conjunction with Urea Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimentation
2.3. Data Collection
2.4. Dry Matter Partitioning
2.5. Crop Growth Rate
2.6. Statistical Analysis
3. Results
3.1. CGR from Transplanting to Tillering (TR-TI)
3.2. CGR from Tillering to Panicle Initiation (TI-PI)
3.3. CGR from Panicle Initiation to Physiological Maturity (PI-PM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathod, S.; Chitikela, G.; Bandumula, N.; Ondrasek, G.; Ravichandran, S.; Sundaram, R.M. Modeling and Forecasting of Rice Prices in India during the COVID-19 Lockdown Using Machine Learning Approaches. Agronomy 2022, 12, 2133. [Google Scholar] [CrossRef]
- Rathod, S.; Yerram, S.; Arya, P.; Katti, G.; Rani, J.; Padmakumari, A.P.; Somasekhar, N.; Padmavathi, C.; Ondrasek, G.; Amudan, S.; et al. Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning Approaches. Agronomy 2021, 12, 22. [Google Scholar] [CrossRef]
- Amanullah; Inamullah; Alkahtani, J.; Elshikh, M.S.; Alwahibi, M.S.; Muhammad, A.; Ahmad, M.; Khalid, S. Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars. Agronomy 2020, 10, 1356. [Google Scholar] [CrossRef]
- Amanullah, O.G.; Al-Tawaha, A.R. Integrated nutrients management: An approach for sustainable crop production and food security in changing climates. Front. Plant Sci. 2023, 14, 1288030. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, Y.; Yuan, L.; Li, J.; Li, W.; Lin, Z.; Zhao, B. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 91–99. [Google Scholar]
- Liu, X.; Bai, Y.; Du, X.; Ma, Y.; Li, Q.; Zhang, M. Effects of Nitrogen Application Rate on Yield, Absorption, and Utilization of Winter Wheat. Front. Plant Sci. 2020, 11, 212. [Google Scholar] [CrossRef]
- Kant, P.; Thakur, V.; Srivastava, A.K.; Nayak, A.K. Nitrogen Fertilization and Grain Yield of Maize: A Meta-Analysis. Agronomy 2021, 11, 691. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, S.; Liu, F.; Ji, P.; Wang, X.; Tong, Y. Effects of Chemical Fertilizer Combined with Organic Manure on Early Rice Yield and Nitrogen Fate in Paddy Field. J. Shenyang Agric. Univ. 2019, 50, 728–733. [Google Scholar]
- Amanullah; Almas, L.K.; Shah, P. Timing and Rate of Nitrogen Application Influence Profitability of Maize Planted at Low and High Densities in Northwest Pakistan. Agron. J. 2010, 102, 575–579. [Google Scholar] [CrossRef]
- Hidayatullah, A.; Jan, A.; Shah, Z. Residual effect of organic nitrogen sources applied to rice on the subsequent wheat crop. Int. J. Agron. Plant Prod. 2013, 4, 620–631. [Google Scholar]
- Hou, H.Q.; Ji, J.H.; Liu, X.M.; Lv, Z.Z.; Lan, X.J.; Liu, Y.R. Effects of different proportion of organic fertilizers on rice yield and nitrogen use efficiency. Soils 2020, 52, 758–765. [Google Scholar]
- Ondrasek, G.; Begić, H.B.; Romić, D.; Brkić, Ž.; Husnjak, S.; Kovačić, M.B. A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive. Environ. Sci. Eur. 2021, 33, 23. [Google Scholar] [CrossRef]
- Ondrasek, G.; Horvatinec, J.; Kovačić, M.B.; Reljić, M.; Vinceković, M.; Rathod, S.; Bandumula, N.; Dharavath, R.; Rashid, M.I.; Panfilova, O.; et al. Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts. Agronomy 2023, 13, 1544. [Google Scholar] [CrossRef]
- Myint, A.; Yamakawa, T.; Kajihara, Y.; Zenmyo, T. Application of different organic and mineral fertilizers on the growth, yield and nutrient accumulation of rice in a Japanese ordinary paddy field. Sci. World J. 2010, 5, 47–54. [Google Scholar] [CrossRef]
- Amanullah; Khan, S.-u.-T.; Iqbal, A.; Fahad, S. Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Front. Plant Sci. 2016, 7, 1440. [Google Scholar] [CrossRef]
- Ahmad, R.; Naveed, M.; Aslam, M.; Zahir, Z.A.; Arshad, M.; Jilani, G. Economizing the use of nitrogen fertilizer in wheat production through enriched compost. Renew. Agric. Food Syst. 2008, 23, 243–249. [Google Scholar] [CrossRef]
- Amanullah, A.; Khan, A. Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria. Front. Plant Sci. 2015, 6, 1083. [Google Scholar] [CrossRef]
- Hidayatullah, A. Sources, ratios and mixtures of organic and inorganic nitrogen influence plant height of hybrid rice (Oryza sativa) at various growth stages. EC Agric. 2015, 2, 328–337. [Google Scholar]
- Amanullah; Khalid, S. Integrated use of phosphorus, animal manures and biofertilizers improve maize productivity under semiarid condition. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; Larramendy, M.L., Soloneski, S., Eds.; InTech: Rijeka, Croatia, 2016; pp. 137–155. [Google Scholar]
- Huang, J.; Huang, Z.; Jia, X.; Hu, R.; Xiang, C. Longterm reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Cong, R.-H.; Zhang, Z.; Lu, J.-W.; Li, X.-K.; Ren, T.; Wang, W.-N. Evaluation of nitrogen requirement and efficiency of rice in the region of Yangtze River valley based on large-scale field experiments. J. Integr. Agric. 2015, 14, 2090–2098. [Google Scholar] [CrossRef]
- Dai, X.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z.; Yao, Y.; et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China. Soil Tillage Res. 2021, 205, 104753. [Google Scholar] [CrossRef]
- Amanullah, H. Influence of organic and inorganic nitrogen on grain yield and yield components of hybrid rice in Northwestern Pakistan. Rice Sci. 2016, 23, 326–333. [Google Scholar] [CrossRef]
- Amanullah; Stewart, B.A. Dry matter portioning, growth analysis and water use efficiency response of oats (Avena sativa L.) to excessive nitrogen and phosphorus application. J. Agr. Sci. Tech. 2013, 15, 479–489. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedures of Statistics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Ebaid, R.A.; El-Refaee, I.S. Utilization of rice husk as an organic fertilizer to improve productivity and water use efficiency in rice fields. Afr. Crop Sci. Conf. Proc. 2007, 8, 1923–1928. [Google Scholar]
- Hossaen, M.; Shamsuddoha, A.; Paul, A.; Bhuiyan, M.; Zobaer, A. Efficacy of Different Organic Manures and Inorganic Fertilizer on the Yield and Yield Attributes of Boro Rice. Agriculturists 2011, 9, 117–125. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Ahamed, K.U.; Rahmatullah, M.; Akhter, N.; Nahar, K.; Rahman, M.L. Plant growth characters and productivity of wetland rice (Oryza sativa L.) as affected by application of different manures. Emir. J. Food Agric. 2010, 22, 46–58. [Google Scholar]
- Amanullah; Hidayatullah; Jan, A.; Shah, Z.; Khan, M.J.; Parmar, B.; Fahad, S. Organic carbon sources and nitrogen man-agement improve biomass of hybrid rice (Oryza sativa L.) under nitrogen deficient condition. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M.-S., Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: Chennai, India, 2019; pp. 447–468. [Google Scholar]
- Amanullah; Ullah, H.; Soliman Elshikh, M.; Alwahibi, M.S.; Alkahtani, J.; Muhammad, A.; Khalid, S. Nitrogen contents in soil, grains, and straw of hybrid rice differ when applied with different organic nitrogen sources. Agriculture 2020, 10, 386. [Google Scholar] [CrossRef]
- Matsoukis, A.; Gasparatos, D.; Chronopoulou-Sereli, A. Environmental conditions and drenched-applied paclobutrazol effects on lantana specific leaf area and N, P, K, and Mg content. Chil. J. Agric. Res. 2014, 74, 117–122. [Google Scholar] [CrossRef]
- Yaduvanshi, N.P.S.; Swarap, A. Effect of continuous use of sodic irrigation water with and without gypsum, farmyard manure, pressmud and fertilizer on soil properties and yields of rice and wheat in a long-term experiment. Nutr. Cycl. Agroecosystems 2005, 73, 111–118. [Google Scholar] [CrossRef]
- Amanullah; Shah, F. Nitrogen in Agriculture-Updates; InTech: Rijeka, Croatia, 2018; ISBN 978-953-51-5398-6. [Google Scholar]
- Shah, A.; Shah, S.M.; Mohammad, W.; Shafi, M.; Nawaz, H.; Shehzadi, S.; Amir, M. Effect of integrated use of organic and inorganic N sources on wheat yield. Sarhad. J. Agric. 2010, 26, 559–563. [Google Scholar]
- Khan, A.R.; Chandra, C.; Nanda, P.; Singh, S.S.; Ghorai, A.K.; Singh, S.R. Integrated nutrient management for sustainable rice production. Arch. Agron Soil Sci. 2004, 50, 161–165. [Google Scholar] [CrossRef]
- Antil, R.S.; Singh, M. Effects of organic maures and fertilizers on organic matter and nutrients status of the soil. Arch. Agron. Soil Sci. 2007, 53, 519–528. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Khan, A.; Akhtar, K.; Wei, S.; Zhao, Q.; Zhang, J.; et al. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS ONE 2020, 15, e0238934. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Yuan, M.; Wu, G.; Sun, Y. Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin. Life 2023, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Chen, C.T.; Yang, M.D.; Wu, Y.C.; Lin, C.Y.; Lai, M.H.; Yang, C.Y. Controlling the lodging risk of rice based on a plant height dynamic model. Bot Stud. 2022, 63, 25. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hu, X.; Gao, L.; Xie, K.; Ling, N.; Shen, Q.; Hu, S.; Guo, S. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Sci. Rep. 2017, 7, 2101. [Google Scholar] [CrossRef] [PubMed]
- Amanullah. Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L.) planted at low and high densities on calcareous soil in northwest Pakistan. J. Plant Nutr. 2016, 39, 683–690. [Google Scholar] [CrossRef]
- Amanullah; Khan, I.; Jan, A.; Jan, M.T.; Khalil, S.K.; Shah, Z.; Afzal, M. Compost and nitrogen management influence productivity of spring maize (Zea mays L.) under deep and conventional tillage systems in Semi-arid regions. Comm. Soil Sci. Plant Anal. 2015, 46, 1566–1578. [Google Scholar] [CrossRef]
- Khan, A., Jr.; Almas, L.K.; Al-Noaim, M.I. Nitrogen Rates and Sources Affect Yield and Profitability of Maize in Pakistan. Crop. Forage Turfgrass Manag. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Amanullah. Source and rate of nitrogen application influence agronomic N-use efficiency and harvest index in maize (Zea mays L.) genotypes. Maydica 2014, 59, 80–89. [Google Scholar]
- Nadia; Amanullah; Arif, M.; Muhammad, D. Improvement in Wheat Productivity with Integrated Management of Beneficial Microbes along with Organic and Inorganic Phosphorus Sources. Agriculture 2023, 13, 1118. [Google Scholar] [CrossRef]
- Song, W.; Shu, A.; Liu, J.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere 2022, 32, 637–648. [Google Scholar] [CrossRef]
Treatments | Percent N Applied from Urea | Percent N Applied from Organic Sources | |||||
---|---|---|---|---|---|---|---|
Cattle | Poultry | Sheep | Onion | Wheat | Berseem | ||
T1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
T2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
T3 | 75 | 25 | 0 | 0 | 0 | 0 | 0 |
T4 | 75 | 0 | 25 | 0 | 0 | 0 | 0 |
T5 | 75 | 0 | 0 | 25 | 0 | 0 | 0 |
T6 | 75 | 0 | 0 | 0 | 25 | 0 | 0 |
T7 | 75 | 0 | 0 | 0 | 0 | 25 | 0 |
T8 | 75 | 0 | 0 | 0 | 0 | 0 | 25 |
T9 | 50 | 50 | 0 | 0 | 0 | 0 | 0 |
T10 | 50 | 0 | 50 | 0 | 0 | 0 | 0 |
T11 | 50 | 0 | 0 | 50 | 0 | 0 | 0 |
T12 | 50 | 0 | 0 | 0 | 50 | 0 | 0 |
T13 | 50 | 0 | 0 | 0 | 0 | 50 | 0 |
T14 | 50 | 0 | 0 | 0 | 0 | 0 | 50 |
T15 | 25 | 75 | 0 | 0 | 0 | 0 | 0 |
T16 | 25 | 0 | 75 | 0 | 0 | 0 | 0 |
T17 | 25 | 0 | 0 | 75 | 0 | 0 | 0 |
T18 | 25 | 0 | 0 | 0 | 75 | 0 | 0 |
T19 | 25 | 0 | 0 | 0 | 0 | 75 | 0 |
T20 | 25 | 0 | 0 | 0 | 0 | 0 | 75 |
T21 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
T22 | 0 | 0 | 100 | 0 | 0 | 0 | 0 |
T23 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
T24 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
T25 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
T26 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
N-Sources | C:N Ratio | Nitrogen (%) |
---|---|---|
Cattle Manure | 18:1 | 1.1 |
Poultry Manure | 12:1 | 2.9 |
Sheep Manure | 15:1 | 1.2 |
Onion Leaves | 17:1 | 1.2 |
Wheat Straw | 116:1 | 0.5 |
Berseem Straw | 14:1 | 1.7 |
Level of Significance | ||||
---|---|---|---|---|
Sources of Variance | DF | TR-TI | TI-PI | PI-PM |
Years (Y) | 1 | *** | ** | *** |
Blocks (Years) | 6 | - | - | - |
Treatments | 25 | *** | *** | * |
Control vs. Rest | (1) | *** | *** | *** |
Urea vs Pure OS (Organic Sources) | (1) | *** | *** | ns |
Among all OS (Sole + Mixtures) | (23) | *** | *** | ns |
Pure OS vs. Mixtures | [1] | *** | *** | ns |
Pure OS | [5] | *** | ns | * |
Animal Manures (AM) vs. Crop Residues (CR) | {1} | *** | * | ** |
Mixtures | [17] | *** | *** | ns |
Ratios | {2} | *** | *** | ns |
Organic Sources in Mixtures | {5} | *** | *** | ns |
Ratios × Organic Sources | {10} | ns | ns | ns |
Y × Treatments | 25 | *** | ns | ns |
Y × Control vs. Rest | (1) | *** | ns | ** |
Y × Urea vs. Pure OS | (1) | *** | ns | * |
Y × Among all OS | (23) | *** | ns | ns |
Y × Pure OS vs. Mixtures | [1] | * | ns | ** |
Y × Pure OS | [5] | ns | ns | ns |
Y × AM vs. CR | {1} | ns | ns | ns |
Y × Mixtures | [17] | *** | ns | ns |
Y × Ratios | {2} | *** | ns | ns |
Y × OS in Mixtures | {5} | * | ns | ns |
Y × Ratios × OS | {10} | ns | ns | ns |
Error | 150 | - | - | - |
Total | 207 | - | - | - |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
Cattle Manure | 3.37 | 4.55 | 3.96 |
Poultry Manure | 3.51 | 4.62 | 4.06 |
Sheep Manure | 3.40 | 4.43 | 3.91 |
Onion leaves | 3.16 | 4.03 | 3.60 |
Wheat Straw | 2.70 | 3.45 | 3.07 |
Berseem Straw | 3.26 | 4.13 | 3.70 |
Level of Significance | * | *** | *** |
75U:25OS | 5.77 | 6.21 | 5.99 |
50U:50OS | 5.40 | 7.28 | 6.34 |
25U:75OS | 4.60 | 6.09 | 5.34 |
Level of Significance | *** | *** | *** |
Urea + Organic sources | |||
Urea + Cattle Manure | 5.83 | 7.04 | 6.43 |
Urea + Poultry Manure | 6.49 | 7.42 | 6.96 |
Urea + Sheep Manure | 5.38 | 6.82 | 6.10 |
Urea + Onion Leaves | 4.83 | 6.20 | 5.52 |
Urea + Wheat Straw | 4.13 | 5.24 | 4.68 |
Urea + Berseem Straw | 4.89 | 6.43 | 5.66 |
Level of Significance | *** | *** | *** |
Planned mean comparison | |||
Control | 2.37 | 2.10 | 2.24b |
Rest | 5.10 | 6.14 | 5.62a |
Urea | 7.23 | 7.34 | 7.28a |
Mixture | 5.26 | 6.53 | 5.89b |
Pure OS | 3.23 | 4.20 | 3.72b |
Mixture | 5.26 | 6.53 | 5.89a |
Urea | 7.23 | 7.34 | 7.28a |
Pure OS | 3.23 | 4.20 | 3.72b |
Animal Manure | 5.28 | 6.45 | 5.87a |
Crop Residues | 4.22 | 5.44 | 4.83b |
Urea | 7.23 | 7.34 | 7.28a |
Pure OS + Mix | 4.75 | 5.94 | 5.35b |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y × U vs. Mix | *** |
Y × ratios | *** | Y × OS vs. Mix | * |
Y × mixtures | * | Y × AM vs. CR | ns |
Y × control vs. rest | *** | Y × U vs. OS + Mix | *** |
Y × urea vs. OS | ** |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
Cattle Manure | 31.06 | 35.45 | 33.26 |
Poultry Manure | 33.51 | 37.88 | 35.70 |
Sheep Manure | 31.50 | 34.86 | 33.18 |
Onion leaves | 30.00 | 33.11 | 31.56 |
Wheat Straw | 26.06 | 29.92 | 27.99 |
Berseem Straw | 30.88 | 33.68 | 32.28 |
Level of Significance | ns | ns | ns |
75U:25OS | 50.93 | 54.15 | 52.54 |
50U:50OS | 46.85 | 50.29 | 48.57 |
25U:75OS | 43.69 | 46.93 | 45.31 |
Level of Significance | *** | *** | *** |
Urea + Organic sources | |||
Urea + Cattle Manure | 48.58 | 54.12 | 51.35 |
Urea + Poultry Manure | 57.67 | 59.76 | 58.72 |
Urea + Sheep Manure | 49.44 | 52.25 | 50.85 |
Urea + Onion Leaves | 44.96 | 46.21 | 45.58 |
Urea + Wheat Straw | 37.54 | 41.94 | 39.74 |
Urea + Berseem Straw | 44.75 | 48.44 | 46.59 |
Level of Significance | *** | *** | *** |
Planned mean comparison | |||
Control | 25.76 | 22.84 | 24.30b |
Rest | 45.75 | 48.43 | 47.09a |
Urea | 62.29 | 60.76 | 61.53a |
Mixture | 47.16 | 50.45 | 48.81b |
Pure OS | 30.50 | 34.15 | 32.33b |
Mixture | 47.16 | 50.45 | 48.81a |
Urea | 62.29 | 60.76 | 61.53a |
Pure OS | 30.50 | 34.15 | 32.33b |
Animal Manure | 46.93 | 50.55 | 48.74a |
Crop Residues | 39.06 | 42.21 | 40.63a |
Urea | 62.29 | 60.76 | 61.53a |
Pure OS + Mix | 42.99 | 46.38 | 44.69b |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y × U vs. Mix | ns |
Y × ratios | ns | Y × OS vs. Mix | ns |
Y × mixtures | ns | Y × AM vs. CR | ns |
Y × control vs. rest | ns | Y × U vs. OS + Mix | ns |
Y × urea vs. OS | ns |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
Cattle Manure | 24.80 | 36.12 | 30.46 |
Poultry Manure | 28.59 | 37.16 | 32.88 |
Sheep Manure | 24.90 | 33.22 | 29.06 |
Onion leaves | 19.26 | 27.75 | 23.50 |
Wheat Straw | 18.12 | 24.75 | 21.44 |
Berseem Straw | 17.92 | 25.42 | 21.67 |
Level of Significance | ns | ns | * |
75U:25OS | 19.61 | 35.30 | 27.46 |
50U:50OS | 20.76 | 41.47 | 31.12 |
25U:75OS | 19.25 | 36.04 | 27.65 |
Level of Significance | ns | ns | ns |
Urea + Organic sources | |||
Urea + Cattle Manure | 21.75 | 38.19 | 29.97 |
Urea + Poultry Manure | 18.60 | 41.39 | 30.00 |
Urea + Sheep Manure | 19.88 | 39.48 | 29.68 |
Urea + Onion Leaves | 19.62 | 37.47 | 28.55 |
Urea + Wheat Straw | 18.20 | 32.19 | 25.19 |
Urea + Berseem Straw | 21.20 | 36.89 | 29.05 |
Level of Significance | ns | ns | ns |
Planned mean comparison | |||
Control | 17.21 | 14.57 | 15.89b |
Rest | 20.51 | 34.06 | 27.28a |
Urea | 20.72 | 23.11 | 21.91a |
Mixture | 19.87 | 37.60 | 28.74a |
Pure OS | 22.26 | 30.74 | 26.50a |
Mixture | 19.87 | 37.60 | 28.74a |
Urea | 20.72 | 23.11 | 21.91a |
Pure OS | 22.26 | 30.74 | 26.50a |
Animal Manure | 21.58 | 38.64 | 30.11a |
Crop Residues | 19.36 | 33.13 | 26.25b |
Urea | 20.72 | 23.11 | 21.91a |
Pure OS + Mix | 20.47 | 35.89 | 28.18a |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y × U vs. Mix | ns |
Y × ratios | ns | Y × OS vs. Mix | ** |
Y × mixtures | ns | Y × AM vs. CR | ns |
Y × control vs. rest | ** | Y × U vs. OS + Mix | * |
Y × urea vs. OS | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanullah; Ullah, H. Boosting Crop Growth Rates of Hybrid Rice (Pukhraj) through Synergistic Use of Organic Nitrogen Sources in Conjunction with Urea Nitrogen. Nitrogen 2024, 5, 28-46. https://doi.org/10.3390/nitrogen5010003
Amanullah, Ullah H. Boosting Crop Growth Rates of Hybrid Rice (Pukhraj) through Synergistic Use of Organic Nitrogen Sources in Conjunction with Urea Nitrogen. Nitrogen. 2024; 5(1):28-46. https://doi.org/10.3390/nitrogen5010003
Chicago/Turabian StyleAmanullah, and Hidayat Ullah. 2024. "Boosting Crop Growth Rates of Hybrid Rice (Pukhraj) through Synergistic Use of Organic Nitrogen Sources in Conjunction with Urea Nitrogen" Nitrogen 5, no. 1: 28-46. https://doi.org/10.3390/nitrogen5010003
APA StyleAmanullah, & Ullah, H. (2024). Boosting Crop Growth Rates of Hybrid Rice (Pukhraj) through Synergistic Use of Organic Nitrogen Sources in Conjunction with Urea Nitrogen. Nitrogen, 5(1), 28-46. https://doi.org/10.3390/nitrogen5010003