An Original Experimental Design to Quantify and Model Net Mineralization of Organic Nitrogen in the Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network Presentation
2.2. Climate
2.3. Experimental Design
2.4. Calculating Net Soil N Mineralization
2.5. Data Screening
2.6. Soil and Plant Analysis
2.7. Calculating an Indicator of the Cropping System
2.8. Statistical Analysis
3. Results
3.1. Accuracy of the Dataset
3.2. Soil N Mineralization: Mass Balance Components and N Rates
3.3. Correlations between Vn, Soil Properties, EON, and I_Sys
3.4. Modeling Normalized N Mineralization Rate
4. Discussion
4.1. Soil N Mineralization and N Rates
4.2. Effect of Cropping System on Net N Mineralization
4.3. Correlations between Vn, Soil Properties, EON and I_Sys
4.4. Modeling the N Mineralization Rate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makowski, D.; Wallach, D.; Meynard, J. Models of Yield, Grain Protein, and Residual Mineral Nitrogen Responses to Applied Nitrogen for Winter Wheat. Agron. J. 1999, 91, 377–385. [Google Scholar] [CrossRef]
- Neeteson, J.J. Development of nitrogen fertilizer recommendations for arable crops in the Netherlands in relation to nitrate leaching. Nutr. Cycl. Agroecosystems 1990, 26, 291–298. [Google Scholar] [CrossRef]
- Meynard, J.; Justes, E.; Machet, J.; Recous, S. Nitrogen fertilizers for annuals. Control. Nitrogen Conc. Agrosystems 1997, 83, 183–199. [Google Scholar]
- Alvarez, R.; Steinbach, H.S.; Grigera, S.M.; Cartier, E.; Obregon, G.; Torri, S.; García, R. The Balance Sheet Method as a Conceptual Framework for Nitrogen Fertilization of Wheat in a Pampean Agroecosystem. Agron. J. 2004, 96, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Romano, N.F.; Alvarez, R.; Bono, A.A.; Steinbach, H.S. Comparison of nitrogen fertilizer demand for wheat production between humid and semi-arid portions of the Argentinean Pampas using a mass balance method. Arch. Agron. Soil Sci. 2015, 61, 1409–1422. [Google Scholar] [CrossRef]
- Griffin, T.S.; Honeycutt, C.W.; Albrecht, S.L.; Sistani, K.R.; Torbert, H.A.; Wienhold, B.J.; Woodbury, B.L.; Hubbard, R.K.; Powei, J.M. Nationally coordinated evaluation of soil nitrogen mineralization rate using a standardized aerobic incubation protocol. Commun. Soil Sci. Plant Anal. 2008, 39, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Stanford, G.; Smith, S.J. Nitrogen Mineralization Potentials of Soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Bittman, S.; Drury, C.F.; McConkey, B.G.; Ziadi, N. Response of Potentially Mineralizable Soil Nitrogen and Indices of Nitrogen Availability to Tillage System. Soil Sci. Soc. Am. J. 2008, 72, 1124–1131. [Google Scholar] [CrossRef]
- Delin, S.; Lindén, B. Relations Between Net Nitrogen Mineralization and Soil Characteristics Within an Arable Field. Acta Agric. Scand. Sect. B Soil Plant Sci. 2002, 52, 78–85. [Google Scholar] [CrossRef]
- Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biol. Biochem. 1994, 26, 1221–1231. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Salt, G.J. Carbon and nitrogen mineralisation in sand, silt, and clay fractions of soils under maize and pasture. Soil Res. 2001, 39, 361. [Google Scholar] [CrossRef]
- Clivot, H.; Mary, B.; Valé, M.; Cohan, J.-P.; Champolivier, L.; Piraux, F.; Laurent, F.; Justes, E. Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biol. Biochem. 2017, 111, 44–59. [Google Scholar] [CrossRef]
- Kemmitt, S.; Wright, D.; Goulding, K.; Jones, D. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Luce, M.S.; Ziadi, N.; Zebarth, B.J.; Whalen, J.K.; Grant, C.A.; Gregorich, E.G.; Lafond, G.P.; Blackshaw, R.E.; Johnson, E.N.; O’Donovan, J.T.; et al. Particulate organic matter and soil mineral nitrogen concentrations are good predictors of the soil nitrogen supply to canola following legume and non-legume crops in western Canada. Can. J. Soil Sci. 2013, 93, 607–620. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Does organic farming accumulate carbon in deeper soil profiles in the long term? Geoderma 2017, 288, 213–221. [Google Scholar] [CrossRef]
- Balesdent, J.; Besnard, E.; Arrouays, D.; Chenu, C. The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 1998, 201, 49–57. [Google Scholar] [CrossRef]
- Whalen, J.K.; Bottomley, P.J.; Myrold, D.D. Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biol. Biochem. 2000, 32, 1345–1352. [Google Scholar] [CrossRef]
- Gregorich, E.; Beare, M.; Mckim, U.; Skjemstad, J. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 2006, 70, 975–985. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Lanyon, L.E.; Needelman, B.A. Evaluating Soil Management Using Particulate and Chemically Labile Soil Organic Matter Fractions. Soil Sci. Soc. Am. J. 2008, 72, 180–185. [Google Scholar] [CrossRef]
- Spargo, J.T.; Cavigelli, M.A.; Mirsky, S.B.; Maul, J.E.; Meisinger, J.J. Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems. Nutr. Cycl. Agroecosystems 2011, 90, 253–266. [Google Scholar] [CrossRef]
- Bu, R.; Lu, J.; Ren, T.; Liu, B.; Li, X.; Cong, R. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems. PLoS ONE 2015, 10, e0143835. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Sleutel, S.; Begum, S.A.; D’Haene, K.; Jegajeevagan, K.; De Neve, S. Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use Manag. 2010, 26, 494–507. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Long-Term Changes in Soil Carbon and Nitrogen Pools in Wheat Management Systems. Soil Sci. Soc. Am. J. 1994, 58, 1639. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Halvorson, A.D. Nitrogen Mineralization Responses to Cropping, Tillage, and Nitrogen Rate in the Northern Great Plains. Soil Sci. Soc. Am. J. 1999, 63, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Poudel, D.D.; Horwath, W.R.; Lanini, W.T.; Temple, S.R.; van Bruggen, A.H.C. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Porter, G.A. Organic Amendment History and Crop Rotation Effects on Soil Nitrogen Mineralization Potential and Soil Nitrogen Supply in a Potato Cropping System. Agron. J. 2008, 100, 1562–1572. [Google Scholar] [CrossRef]
- Constantin, J.; Beaudoin, N.; Laurent, F.; Cohan, J.-P.; Duyme, F.; Mary, B. Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant Soil 2011, 341, 137–154. [Google Scholar] [CrossRef]
- Mallory, E.B.; Griffin, T.S. Impacts of Soil Amendment History on Nitrogen Availability from Manure and Fertilizer. Soil Sci. Soc. Am. J. 2007, 71, 964–973. [Google Scholar] [CrossRef]
- Schroder, J.; Jansen, A.; Hilhorst, G. Long-term nitrogen supply from cattle slurry. Soil Use Manag. 2005, 21, 196–204. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Cooper, J.M. Evaluation of Some Indices of Potentially Mineralizable Nitrogen in Soil. Soil Sci. Soc. Am. J. 2007, 71, 1233–1239. [Google Scholar] [CrossRef]
- Ros, G.H.; Temminghoff, E.J.M.; Hoffland, E. Nitrogen mineralization: A review and meta-analysis of the predictive value of soil tests. Eur. J. Soil Sci. 2011, 62, 162–173. [Google Scholar] [CrossRef]
- McDonald, N.T.; Watson, C.J.; Lalor, S.T.J.; Laughlin, R.J.; Wall, D.P. Evaluation of Soil Tests for Predicting Nitrogen Mineralization in Temperate Grassland Soils. Soil Sci. Soc. Am. J. 2014, 78, 1051–1064. [Google Scholar] [CrossRef]
- Scheu, S. Linkages between tree diversity, soil fauna and ecosystem processes. In Forest Diversity and Function; Springer: Berlin/Heidelberg, Germany, 2005; Volume 176, pp. 211–233. [Google Scholar]
- Mary, B.; Beaudoin, N.; Justes, E.; Machet, J.M. Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model: N mineralization and leaching in fallow soil. Eur. J. Soil Sci. 1999, 50, 549–566. [Google Scholar] [CrossRef]
- Oorts, K.; Laurent, F.; Mary, B.; Thiebeau, P.; Labreuche, J.; Nicolardot, B. Experimental and simulated soil mineral N dynamics for long-term tillage systems in northern France. Soil Tillage Res. 2007, 94, 441–456. [Google Scholar] [CrossRef]
- Engels, T.; Kuhlmann, H. Effect of the rate of N fertilizer on apparent net mineralization of N during and after cultivation of cereal and sugar beet crops. Z. Pflanzenernähr. Bodenkd. 1993, 156, 149–154. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Rodrigo, A.; Recous, S.; Neel, C.; Mary, B. Modelling temperature and moisture effects on C-N transformations in soils: Comparison of nine models. Ecol. Model. 1997, 102, 325–339. [Google Scholar] [CrossRef]
- Rémy, J.; Hébert, J. Le devenir des engrais azotés dans le sol. Acad. Agric. Fr. 1977, 63, 700–714. [Google Scholar]
- Morvan, T.; Lambert, Y.; Germain, P.; Beff, L. A dataset from a 3-year network of field measurements of soil organic nitrogen mineralization under a mild oceanic temperate climate. Data Brief 2021, 35, 106795. [Google Scholar] [CrossRef]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef]
- Krom, M.D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Sims, J.R.; Jackson, G.D. Rapid analysis of soil nitrate with chromotropic acid. Soil Sci. Soc. Am. J. 1970, 35, 603–606. [Google Scholar] [CrossRef]
- AFNOR. Norme NF X 31-130, Méthodes chimiques, Détermination de la capacité d’échange cationique (CEC) et des cations extractibles. In Normes Nationales et Documents Normatifs Nationaux; Qualité des Sols: Paris, France, 1999. [Google Scholar]
- AFNOR. Norme NF X 10390, Détermination du pH. In Normes Nationales et Documents Normatifs Nationaux; Qualité des Sols: Paris, France, 2005. [Google Scholar]
- AFNOR. Norme NF X 31-107, Détermination de la distribution granulométrique des particules du sol, Méthode à la pipette. In Normes Nationales et Documents Normatifs Nationaux; Qualité du Sol: Paris, France, 2003. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Gianello, C.; Bremner, J.M. A rapid steam distillation method of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1551–1568. [Google Scholar] [CrossRef]
- Hirte, J.; Leifeld, J.; Abiven, S.; Mayer, J. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Res. 2018, 216, 197–208. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: www.R-Project.org (accessed on 18 May 2021).
- Louis, B.P.; Maron, P.-A.; Menasseri-Aubry, S.; Sarr, A.; Leveque, J.; Mathieu, O.; Jolivet, C.; Leterme, P.; Viaud, V. Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source. PLoS ONE 2016, 11, e0161251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Wallach, D. Working with Dynamic Crop Models. In Evaluation, Analysis, Parameterization and Applications; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Lemaire, G.; Meynard, J. Part 1: On the Critical N Concentration in Agricultural Crops. Use of the Nitrogen Nutrition Index for the Analysis of Agronomical Data. In Diagnosis of the Nitrogen Status in Crops; Springer: Berlin, Germany, 1997; pp. 45–55. [Google Scholar]
- Rozas, H.R.S.; Echeverría, H.E.; Barbieri, P.A. Nitrogen Balance as Affected by Application Time and Nitrogen Fertilizer Rate in Irrigated No-Tillage Maize. Agron. J. 2004, 96, 1622–1631. [Google Scholar] [CrossRef]
- Bono, A.; Alvarez, R. Nitrogen mineralization in a coarse soil of the semi-arid Pampas of Argentina. Arch. Agron. Soil Sci. 2013, 59, 259–272. [Google Scholar] [CrossRef]
- Lado-Monserrat, L.; Lull, C.; Bautista, I.; Lidón, A.; Herrera, R. Soil moisture increment as a controlling variable of the “Birch effect”. Interactions with the pre-wetting soil moisture and litter addition. Plant Soil 2014, 379, 21–34. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 1999, 11, 91–101. [Google Scholar] [CrossRef]
- Delphin, J.-E. Estimation of nitrogen mineralization in the field from an incubation test and from soil analysis. Agronomie 2000, 20, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Carpenter-Boggs, L.; Pikul, J.L.; Vigil, M.F.; Riedell, W.E. Soil Nitrogen Mineralization Influenced by Crop Rotation and Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2000, 64, 2038–2045. [Google Scholar] [CrossRef] [Green Version]
- Culman, S.W.; Snapp, S.S.; Green, J.M.; Gentry, L.E. Short- and Long-Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. Agron. J. 2013, 105, 493–502. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Liebman, M.; Castellano, M.J. Can soil nitrogen dynamics explain the yield benefit of crop diversification? Field Crops Res. 2018, 219, 33–42. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Glob. Change Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Yin, M.; Chu, G.; Xu, C.; Zhang, X.; Abliz, B.; Tang, C.; Wang, D.; Chen, S. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil Tillage Res. 2022, 215, 105219. [Google Scholar] [CrossRef]
- Verloop, J.; Hilhorst, G.J.; Oenema, J.; Van Keulen, H.; Sebek, L.B.J.; Van Ittersum, M.K. Soil N mineralization in a dairy production system with grass and forage crops. Nutr. Cycl. Agroecosystems 2014, 98, 267–280. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- Schroder, J.J.; Uenk, D.; Hilhorst, G.J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 2007, 299, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Georgallas, A. Predicting soil nitrogen supply from soil properties. Can. J. Soil Sci. 2015, 95, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Griffin, G.F.; Laine, A.F. Nitrogen Mineralization in Soils Previously Amended with Organic Wastes 1. Agron. J. 1983, 75, 124–129. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E. Potentially Mineralizable Nitrogen in Disturbed and Undisturbed Soil Samples. Soil Sci. Soc. Am. J. 1988, 52, 1010–1015. [Google Scholar] [CrossRef]
- Hassink, J. Effect of soil texture on the size of the microbial biomass and on the amount of c and n mineralized per unit of microbial biomass in dutch grassland soils. Soil Biol. Biochem. 1994, 26, 1573–1581. [Google Scholar] [CrossRef]
- Moharana, P.C.; Sharma, B.M.; Biswas, D.R.; Dwivedi, B.S.; Singh, R.V. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet–wheat cropping system in an Inceptisol of subtropical India. Field Crops Res. 2012, 136, 32–41. [Google Scholar] [CrossRef]
- Bechtold, J.S.; Naiman, R.J. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biol. Biochem. 2006, 38, 1325–1333. [Google Scholar] [CrossRef]
- Schomberg, H.H.; Wietholter, S.; Griffin, T.S.; Reeves, D.W.; Cabrera, M.L.; Fisher, D.S.; Endale, D.M.; Novak, J.M.; Balkcom, K.S.; Raper, R.L.; et al. Assessing Indices for Predicting Potential Nitrogen Mineralization in Soils under Different Management Systems. Soil Sci. Soc. Am. J. 2009, 73, 1575–1586. [Google Scholar] [CrossRef]
- Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; et al. Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Res. 2020, 255, 107863. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. Modeling Apparent Nitrogen Mineralization under Field Conditions Using Regressions and Artificial Neural Networks. Agron. J. 2011, 103, 1159–1168. [Google Scholar] [CrossRef]
Variable | Unit | 137 Fields | 67 Fields |
---|---|---|---|
Clay | g kg−1 | 194 (±52.0) | 183 (±36.0) |
Fine Silt | g kg−1 | 247.8 (±87.5) | 237.4 (±73.7) |
Coarse Silt | g kg−1 | 268.3 (±118.8) | 264.9 (±112.4) |
Silt | g kg−1 | 516 (±135.0) | 502 (±132.0) |
Fine Sand | g kg−1 | 125.6 (±53.6) | 129.8 (±52.0) |
Coarse Sand | g kg−1 | 164.5 (±129.3) | 185.0 (±136.4) |
Sand | g kg−1 | 290 (±145.0) | 315 (±145.0) |
C content | g C kg−1 | 19.8 (±6.5) | 20.2 (±6.1) |
N content | g N kg−1 | 1.8 (±0.6) | 1.8 (±0.5) |
pH | 6.1 (±0.5) | 6.0 (±0.5) | |
CEC Metson | meq 100g−1 | 9.8 (±2.5) | 9.9 (±2.2) |
SMB | mg C kg−1 | 171.3 (±45.3) | 168.4 (±38.2) |
EON | mg N kg−1 | 27.3 (±8.4) | 27.7 (±7.4) |
POM-N | t N ha−1 | 0.67 (±0.24) | 0.68 (±0.24) |
SON | t N ha−1 | 6.5 (±1.5) | 6.5 (±1.5) |
Year | Metric | N Uptake | Ni | Nf | N Leached | Mn | tn | Vn |
---|---|---|---|---|---|---|---|---|
kg N ha−1 | kg N ha−1 | kg N ha−1 | kg N ha−1 | kg N ha−1 | nday | kg N ha−1 nday−1 | ||
2012 | mean | 144 | 47 | 46 | 22 | 162 | 165 | 0.99 |
min | 50 | 6 | 7 | 1 | 53 | 112 | 0.28 | |
max | 292 | 145 | 155 | 63 | 302 | 202 | 1.68 | |
SD | 47 | 29 | 30 | 14 | 52 | 16 | 0.31 | |
2013 | mean | 106 | 36 | 71 | 9 | 146 | 139 | 1.06 |
min | 39 | 12 | 17 | 1 | 66 | 102 | 0.41 | |
max | 257 | 82 | 167 | 30 | 326 | 181 | 2.3 | |
SD | 41 | 13 | 30 | 6 | 60 | 16 | 0.45 | |
2014 | mean | 147 | 34 | 38 | 6 | 154 | 172 | 0.92 |
min | 73 | 10 | 8 | 0 | 75 | 122 | 0.39 | |
max | 334 | 116 | 168 | 27 | 454 | 213 | 2.39 | |
SD | 56 | 17 | 28 | 5 | 71 | 20 | 0.44 |
Vn12 | Vn13 | Vn14 | Vnmean | I_Sys | SON | EON | SMB | POM-N | Clay | F Silt | C Silt | Silt | F Sand | C Sand | Sand | pH | CEC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vn12 | 1.00 | 0.63 | 0.53 | 0.81 | 0.37 | 0.38 | 0.34 | 0.45 | 0.45 | −0.12 | −0.08 | −0.10 | −0.13 | −0.21 | 0.24 | 0.15 | 0.06 | 0.26 |
Vn13 | 1.00 | 0.56 | 0.88 | 0.38 | 0.27 | 0.40 | 0.36 | 0.45 | −0.07 | −0.17 | −0.16 | −0.23 | −0.10 | 0.28 | 0.23 | −0.03 | 0.16 | |
Vn14 | 1.00 | 0.84 | 0.25 | 0.17 | 0.44 | 0.35 | 0.21 | −0.25 | −0.20 | −0.04 | −0.15 | −0.18 | 0.28 | 0.20 | −0.14 | −0.03 | ||
Vnmean | 1.00 | 0.39 | 0.31 | 0.47 | 0.45 | 0.43 | −0.17 | −0.19 | −0.12 | −0.21 | −0.19 | 0.32 | 0.23 | −0.05 | 0.14 | |||
I_Sys | 1.00 | 0.14 | 0.12 | 0.20 | 0.17 | 0.07 | −0.09 | 0.11 | 0.04 | −0.05 | −0.04 | −0.06 | 0.04 | 0.01 | ||||
SON | 1.00 | 0.64 | 0.07 | 0.75 | 0.16 | 0.15 | −0.48 | −0.33 | −0.16 | 0.33 | 0.26 | −0.18 | 0.78 | |||||
EON | 1.00 | 0.14 | 0.50 | 0.07 | 0.02 | −0.23 | −0.19 | −0.15 | 0.22 | 0.15 | −0.40 | 0.42 | ||||||
SMB | 1.00 | 0.25 | 0.25 | 0.18 | −0.11 | 0.01 | −0.08 | −0.04 | −0.07 | 0.10 | −0.04 | |||||||
POM-N | 1.00 | 0.05 | 0.18 | −0.45 | −0.29 | −0.15 | 0.32 | 0.25 | −0.02 | 0.57 | ||||||||
Clay | 1.00 | 0.54 | −0.04 | 0.27 | −0.15 | −0.46 | −0.49 | 0.04 | 0.25 | |||||||||
F Silt | 1.00 | −0.05 | 0.52 | −0.48 | −0.46 | −0.60 | 0.06 | 0.09 | ||||||||||
C Silt | 1.00 | 0.83 | −0.09 | −0.76 | −0.74 | 0.32 | −0.47 | |||||||||||
Silt | 1.00 | −0.34 | −0.90 | −0.97 | 0.31 | −0.35 | ||||||||||||
F Sand | 1.00 | −0.01 | 0.35 | −0.08 | 0.05 | |||||||||||||
C Sand | 1.00 | 0.93 | −0.28 | 0.25 | ||||||||||||||
Sand | 1.00 | −0.29 | 0.25 | |||||||||||||||
pH | 1.00 | −0.11 | ||||||||||||||||
CEC | 1.00 |
Model | R² | MSEP | RPIQ | Covariates | Relation | dMSEP |
---|---|---|---|---|---|---|
1 | 0.47 | 0.075 | 1.82 | I_Sys | L | 0.214 |
Coarse Sand | P2 | 0.244 | ||||
Clay | P2 | 0.100 | ||||
SON | L | 0.053 | ||||
Coarse Silt | L | 0.024 | ||||
2 | 0.67 | 0.05 | 2.25 | SMB | L | 0.320 |
EON | L | 0.245 | ||||
Coarse Sand | P2 | 0.250 | ||||
Clay | P2 | 0.200 | ||||
I_Sys | L | 0.159 | ||||
Coarse Silt | L | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morvan, T.; Beff, L.; Lambert, Y.; Mary, B.; Germain, P.; Louis, B.; Beaudoin, N. An Original Experimental Design to Quantify and Model Net Mineralization of Organic Nitrogen in the Field. Nitrogen 2022, 3, 197-212. https://doi.org/10.3390/nitrogen3020015
Morvan T, Beff L, Lambert Y, Mary B, Germain P, Louis B, Beaudoin N. An Original Experimental Design to Quantify and Model Net Mineralization of Organic Nitrogen in the Field. Nitrogen. 2022; 3(2):197-212. https://doi.org/10.3390/nitrogen3020015
Chicago/Turabian StyleMorvan, Thierry, Laure Beff, Yvon Lambert, Bruno Mary, Philippe Germain, Benjamin Louis, and Nicolas Beaudoin. 2022. "An Original Experimental Design to Quantify and Model Net Mineralization of Organic Nitrogen in the Field" Nitrogen 3, no. 2: 197-212. https://doi.org/10.3390/nitrogen3020015
APA StyleMorvan, T., Beff, L., Lambert, Y., Mary, B., Germain, P., Louis, B., & Beaudoin, N. (2022). An Original Experimental Design to Quantify and Model Net Mineralization of Organic Nitrogen in the Field. Nitrogen, 3(2), 197-212. https://doi.org/10.3390/nitrogen3020015