A Robust Fractional-Order Controller for Biomedical Applications
Abstract
1. Introduction
- The development of a fractional-order robust control algorithm for the process time constant variations.
- The design of an FO-PI controller that is robust to time constant variations for BIS level control in general anesthesia.
- The design of an FO-PI controller that is robust to time constant variations for blood glucose level control of diabetic patients.
- The design of an FO-PI controller that is robust to time constant variations for computer-controlled chemotherapy.
2. FO-PI Controller for Robustness to Time Constant Variations
- The notation will be substituted into equations in what follows.
- The fractional order is assumed to be known. A later procedure will show how to compute the actual value of .
3. Design of FO-PI Controllers for Biomedical Applications
3.1. BIS Level Control Using an FO-PI Controller for Robustness to Time Constant Variations
3.2. Glucose Control for Diabetic Patients Using an FO-PI Controller for Robustness to Time Constant Variations
3.3. Computer-Controlled Chemotherapy Using an FO-PI Controller for Robustness to Time Constant Variations
4. Comparative Results with Traditional PI Control
4.1. BIS Level Control Using a Standard PI Controller
4.2. Glucose Control for Diabetic Patients Using a Standard PI Controller
4.3. Computer-Controlled Chemotherapy Using a Standard PI Controller
5. Insights and Limitations of the Proposed Approach
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.A.; Hosseinnia, S.H.; Petlenkov, E.; Ates, A.; Cech, M. Towards Industrialization of FOPID Controllers: A Survey on Milestones of Fractional-Order Control and Pathways for Fu ture Developments. IEEE Access 2021, 9, 21016–21042. [Google Scholar] [CrossRef]
- Shah, P.; Sekhar, R.; Sharma, D.; Penubadi, H.R. Fractional order control: A bibliometric analysis (2000–2022). Results Control Optim. 2024, 14, 100366. [Google Scholar] [CrossRef]
- Petráš, I. Chapter Three- Fractional-order control: New control techniques. In Emerging Methodologies and Applications in Modelling, Fractional Order Systems; Radwan, A.G., Khanday, F.A., Said, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 1, pp. 71–106. [Google Scholar] [CrossRef]
- Li, X.; Gao, L. Robust Fractional-order PID Tuning Method for a Plant with an Uncertain Parameter. Int. J. Control Autom. Syst. 2021, 19, 1302–1310. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica 2012, 48, 2159–2167. [Google Scholar] [CrossRef]
- Feliu-Batlle, V. Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach. Int. J. Robust Nonlinear Control 2017, 27, 2145–2164. [Google Scholar] [CrossRef]
- Birs, I.; Muresan, C.I.; Nascu, I.; Ionescu, C. A Survey of Recent Advances in Fractional Order Control for Time Delay Systems. IEEE Access 2019, 7, 30951–30965. [Google Scholar] [CrossRef]
- Dastjerdi, A.A.; Vinagre, B.M.; Chen, Y.; Hassan HosseinNia, S. Linear fractional order controllers; A survey in the frequency domain. Annu. Rev. Control 2019, 47, 51–70. [Google Scholar] [CrossRef]
- Ruan, S. Robust Fractional-Order Proportional-Integral Controller Tuning for Load Frequency Control of a Microgrid System with Communication Delay. Energies 2023, 16, 5418. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, Y.; Chen, Y.; Wang, X. A Simplified Fractional Order PID Controller’s Optimal Tuning: A Case Study on a PMSM Speed Servo. Entropy 2021, 23, 130. [Google Scholar] [CrossRef]
- Hegedus, E.; Birs, I.; Muresan, C. Fractional order control of the combined anaesthesia-hemodynamic system: A preliminary study. IFAC-PapersOnLine 2021, 54, 19–24. [Google Scholar] [CrossRef]
- Chen, P.; Luo, Y.; Peng, Y.; Chen, Y. Optimal robust fractional order PIλD controller synthesis for first order plus time delay systems. ISA Trans. 2021, 114, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, H.S.; Padula, F.; Visioli, A.; Vilanova, R. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models. ISA Trans. 2017, 66, 344–361. [Google Scholar] [CrossRef]
- Yumuk, E.; Güzelkaya, M.; Eksin, İ. Analytical fractional PID controller design based on Bode’s ideal transfer function plus time delay. ISA Trans. 2019, 91, 196–206. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S. Robust Fractional-Order PID Controller Tuning Based on Bode’s Optimal Loop Shaping. Complexity 2018, 2018, 6570560. [Google Scholar] [CrossRef]
- Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A.K.; Fatehi, A. Robust fractional order PI controller tuning based on Bode’s ideal transfer function. IFAC-PapersOnLine 2016, 49, 158–163. [Google Scholar] [CrossRef]
- Saxena, S.; Hote, Y.V. Design of robust fractional-order controller using the Bode ideal transfer function approach in IMC paradigm. Nonlinear Dyn. 2016, 107, 983–1001. [Google Scholar] [CrossRef]
- Şenol, B.; Demiroğlu, U. Fractional order proportional derivative control for first order plus time delay plants: Achieving phase and gain specifications simultaneously. Trans. Inst. Meas. Control 2019, 41, 4358–4369. [Google Scholar] [CrossRef]
- Monje, C.; Calderon, A.; Vinagre, B.; Chen, Y.; Feliu, V. On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties. Nonlinear Dyn. 2004, 38, 369–381. [Google Scholar] [CrossRef]
- Wu, Z.; Li, D.; Xue, Y.; He, T.; Zheng, S. Tuning for fractional order PID controller based on probabilistic robustness. IFAC-PapersOnLine 2018, 51, 675–680. [Google Scholar] [CrossRef]
- Alagoz, B.B.; Yeroglu, C.; Senol, B.; Ates, A. Probabilistic robust stabilization of fractional order systems with interval uncertainty. ISA Trans. 2015, 57, 101–110. [Google Scholar] [CrossRef]
- Kumar, V.; Rana, K.P.S.; Mishra, P. Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J. Frankl. Inst. 2016, 353, 1713–1741. [Google Scholar] [CrossRef]
- Pachauri, N.; Thangavel, V.; Suresh, V.; Kantipudi, M.P.; Kotb, H.; Tripathi, R.N.; Bajaj, M. A Robust Fractional-Order Control Scheme for PV-Penetrated Grid-Connected Microgrid. Mathematics 2023, 11, 1283. [Google Scholar] [CrossRef]
- Martins-Gomes, M.C.; Junior, F.A.D.C.A.; da Costa Junior, C.T.; de Bessa, I.V.; Farias, N.J.D.S.; de Medeiros, R.L.; Silva, L.E.; de Lucena Júnior, V.F. Fractional-Order Robust Control Design under parametric uncertain approach. ISA Trans. 2024, 153, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z. Robust stabilization criterion of fractional-order controllers for interval fractional-order plants. Automatica 2015, 61, 9–17. [Google Scholar] [CrossRef]
- Lanusse, P.; Malti, R.; Melchior, P. CRONE control system design toolbox for the control engineering community: Tutorial and case study. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120149. [Google Scholar] [CrossRef] [PubMed]
- Mseddi, A.; Abid, A.; Naifar, O.; Rhaima, M.; Ben Makhlouf, A.; Mchiri, L. Investigation of the Robust Fractional Order Control Approach Associated with the Online Analytic Unity Magnitude Shaper: The Case of Wind Energy Systems. Fractal Fract. 2024, 8, 187. [Google Scholar] [CrossRef]
- Mihaly, V.; Şuşcă, M.; Dulf, E.H.; Morar, D.; Dobra, P. Fractional Order Robust Controller for Fractional-Order Interval Plants. IFAC-PapersOnLine 2022, 55, 151–156. [Google Scholar] [CrossRef]
- Rhouma, A.; Hafsi, S.; Laabidi, K. Stabilizing and Robust Fractional PID Controller Synthesis for Uncertain First-Order plus Time-Delay Systems. Math. Probl. Eng. 2021, 2021, 9940634. [Google Scholar] [CrossRef]
- Beschi, M.; Padula, F.; Visioli, A. The generalised isodamping approach for robust fractional PID controllers design. Int. J. Control 2015, 90, 1157–1164. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, Y.Q.; Xue, D. Time-constant robust analysis of a fractional order [proportional derivative] controller. IET Control Theory Appl. 2011, 5, 164–172. [Google Scholar] [CrossRef]
- Badri, V.; Tavazoei, M.S. On time-constant robust tuning of fractional order proportional derivative controllers. IEEE/CAA J. Autom. Sin. 2019, 6, 1179–1186. [Google Scholar] [CrossRef]
- Peker, F.; Kaya, I. Maximum sensitivity (Ms)-based I-PD controller design for the control of integrating processes with time delay. Int. J. Syst. Sci. 2022, 54, 313–332. [Google Scholar] [CrossRef]
- Arrieta, O.; Vilanova, R. Simple PID tuning rules with guaranteed Ms robustness achievement. IFAC Proc. Vol. 2011, 44, 12042–12047. [Google Scholar] [CrossRef]
- Padula, F.; Visioli, A. Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 2011, 21, 69–81. [Google Scholar] [CrossRef]
- Patel, K.D.; Patil, S.L. Non-linear tank level control using fractional PI. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 113–116. [Google Scholar] [CrossRef]
- Padula, F.; Visioli, A. Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory Appl. 2012, 6, 776–786. [Google Scholar] [CrossRef]
- Padula, F.; Visioli, A. Set-point weight tuning rules for fractional-order PID controllers. Asian J. Control 2013, 15, 678–690. [Google Scholar] [CrossRef]
- Muresan, C.I.; De Keyser, R. Revisiting Ziegler–Nichols. A fractional order approach. ISA Trans. 2022, 129, 287–296. [Google Scholar] [CrossRef]
- Gude, J.J.; Kahoraho, E. Modified Ziegler-Nichols method for fractional PI controllers. In Proceedings of the 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), Bilbao, Spain, 13–16 September 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Hegedus, E.T.; Birs, I.R.; Ghita, M.; Ionescu, C.M.; De Keyser, R.; Muresan, C.I.; Ghita, M.; Nascu, I. Optimal Fractional Order PID based on a Modified Ziegler-Nichols method. In Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, 16–18 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Marshiana, D.; Thirusakthimurugan, P. Fractional order PI controller for nonlinear systems. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 322–326. [Google Scholar] [CrossRef]
- Copot, D. (Ed.) Automated Drug Delivery in Anesthesia; Elsevier: London, UK; Academic Press: San Diego, CA, USA, 2020; ISBN 978-0-12-815975-0. [Google Scholar]
- Mihai, M.D.; Birs, I.R.; Badau, N.E.; Hegedus, E.T.; Ynineb, A.; Muresan, C.I. Personalised Fractional-Order Autotuner for the Maintenance Phase of Anaesthesia Using Sine-Tests. Fractal Fract. 2025, 9, 317. [Google Scholar] [CrossRef]
- Saleem, O.; Iqbal, J. Complex-order PID controller design for enhanced blood-glucose regulation in Type-I diabetes patients. Meas. Control 2023, 56, 1811–1825. [Google Scholar] [CrossRef]
- Kiss, B.; Sápi, J.; Kovács, L. Imaging method for model-based control of tumor diseases. In Proceedings of the 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 26–28 September 2013; pp. 271–275. [Google Scholar] [CrossRef]
- Biro, J.; Neyens, D.M.; Jaruzel, C.; Tobin, C.D.; Alfred, M.; Coppola, S.; Abernathy, J.H.; Catchpole, K.R. “One size” doesn’t “fit all”: Understanding variability in anesthesia work practices. Hum. Factors Healthc. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Abdulla, S.A.; Wen, P. The Effects of Time-Delay on Feedback Control of Depth of Anesthesia. In Proceedings of the 2012 IEEE EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5–7 January 2012; pp. 956–959. [Google Scholar]
- Pachauri, N.; Suresh, V.; Kantipudi, M.P.; Alkanhel, R.; Abdallah, H.A. Multi-Drug Scheduling for Chemotherapy Using Fractional Order Internal Model Controller. Mathematics 2023, 11, 1779. [Google Scholar] [CrossRef]
- Schiff, J.H.; Welker, A.; Fohr, B.; Henn-Beilharz, A.; Bothner, U.; Van Aken, H.; Schleppers, A.; Baldering, H.J.; Heinrichs, W. Major incidents and complications in otherwise healthy patients undergoing elective procedures: Results based on 1.37 million anaesthetic procedures. BJA Br. J. Anaesth. 2014, 113, 109–121. [Google Scholar] [CrossRef]
- Muresan, C.I.; Mihai, M.D.; Hegedus, E.T.; Birs, I.R.; Ionescu, C.M.; De Keyser, R. A Simplified Robust Fractional Order PID for Dead Time Processes. In Proceedings of the 2025 International Conference on Advanced Robotics, Control, and Artificial Intelligence (ARCAI2025), Nadi, Fiji, 23–26 November 2025. [Google Scholar]
- Merigo, L.; Beschi, M.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Event-Based control of depth of hypnosis in anesthesia. Comput. Methods Programs Biomed. 2017, 147, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Badau, N.; Popescu, T.; Mihai, M.; Birs, I.; Muresan, C. Personalized Control using Fractional Calculus for Patients Experiencing Surgical Stimuli. In Proceedings of the 2025 29th International Conference on System Theory, Control and Computing (ICSTCC), Cluj-Napoca, Romania, 9–11 October 2025. [Google Scholar]
- De Keyser, R.; Muresan, C.I.; Ionescu, C.M. An efficient algorithm for low-order direct discrete-time implementation of frac tional order transfer functions. ISA Trans. 2018, 74, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Padula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G. Optimized PID control of depth of hypnosis in anesthesia. Comput. Methods Programs Biomed. 2017, 144, 21–35. [Google Scholar] [CrossRef]
- Pawłowski, A.; Schiavo, M.; Latronico, N.; Paltenghi, M.; Visioli, A. Event-based MPC for propofol administration in anesthesia. Comput. Methods Programs Biomed. 2023, 229, 107289. [Google Scholar] [CrossRef]
- Hegedüs, E.T.; Birs, I.R.; Ionescu, C.M.; Muresan, C.I. A Novel Decentralized–Decoupled Fractional-Order Control Strategy for Complete Anesthesia–Hemodynamic Stabilization in Patients Undergoing Surgical Procedures. Fractal Fract. 2024, 8, 623. [Google Scholar] [CrossRef]
- Merigo, L.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Event-based control tuning of propofol and remifentanil coadministration for general anaesthesia. IET Control Theory Appl. 2020, 14, 2995–3008. [Google Scholar] [CrossRef]
- Hegedus, E.; Mihai, M.D.; Birs, I.R.; Farbakhsh, H.; Yumuk, E.; Copot, D.; De Keyser, R.; Ionescu, C.M.; Muresan, C.I. A Decoupled Fractional Order Control Strategy to Increase Patient Safety During Anesthesia-Hemodynamic Interactions. In Proceedings of the 2024 European Control Conference (ECC), Stockholm, Sweden, 25–28 June 2024; pp. 3039–3044. [Google Scholar] [CrossRef]
- Dubey, R.S.; Baleanu, D.; Mishra, M.N.; Goswami, P. Solution of modified bergman minimal blood glucose-insulin model using Caputo-Fabrizio fractional derivative. Comput. Model. Eng. Sci. 2021, 128, 1247–1263. [Google Scholar]
- Palumbo, P.; Ditlevsen, S.; Bertuzzi, A.; De Gaetano, A. Mathematical modeling of the glucose–insulin system: A review. Math. Biosci. 2013, 244, 69–81. [Google Scholar] [CrossRef]
- Percival, M.W.; Zisser, H.; Jovanovic, L.; Doyle, F.J. Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic β Cell: Use of Proportional-Integral-Derivative Equivalent Model-Based Controllers. J. Diabetes Sci. Technol. 2008, 2, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Isaac, J.S. IMO-PSO FO-PID controller based insulin infusion system for type 1 diabetes patients during post-operation condition. Meas. Sens. 2024, 33, 101172. [Google Scholar] [CrossRef]
- Pintea, P.; Mihaly, V.; Şuşcă, M.; Dobra, P. Koopman Linearization and Optimal Control of Glucose Level. In Proceedings of the 2024 28th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2024; pp. 45–50. [Google Scholar] [CrossRef]
- Pachauri, N.; Yadav, J.; Rani, A.; Singh, V. Modified fractional order IMC design based drug scheduling for cancer treatment. Comput. Biol. Med. 2019, 109, 121–137. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Unit |
---|---|---|
Controllers and Variations | BIS Control | Glucose Control | Chemotherapy Control |
---|---|---|---|
FO-PI | |||
Standard PI | |||
for FO-PI | |||
for FO-PI | |||
for PI | |||
for PI | 61.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badau, N.E.; Popescu, T.M.; Mihai, M.D.; Birs, I.R.; Muresan, C.I. A Robust Fractional-Order Controller for Biomedical Applications. Fractal Fract. 2025, 9, 597. https://doi.org/10.3390/fractalfract9090597
Badau NE, Popescu TM, Mihai MD, Birs IR, Muresan CI. A Robust Fractional-Order Controller for Biomedical Applications. Fractal and Fractional. 2025; 9(9):597. https://doi.org/10.3390/fractalfract9090597
Chicago/Turabian StyleBadau, Nicoleta E., Teodora M. Popescu, Marcian D. Mihai, Isabela R. Birs, and Cristina I. Muresan. 2025. "A Robust Fractional-Order Controller for Biomedical Applications" Fractal and Fractional 9, no. 9: 597. https://doi.org/10.3390/fractalfract9090597
APA StyleBadau, N. E., Popescu, T. M., Mihai, M. D., Birs, I. R., & Muresan, C. I. (2025). A Robust Fractional-Order Controller for Biomedical Applications. Fractal and Fractional, 9(9), 597. https://doi.org/10.3390/fractalfract9090597