Evolutionary Approach to Inequalities of Hermite–Hadamard–Mercer Type for Generalized Wright’s Functions Associated with Computational Evaluation and Their Applications
Abstract
1. Introduction
2. Trapezoidal Type Inequalities for Twice Differentiable Convex Functions via Raina’s Fractional Integrals
3. Midpoint Type Inequalities for Twice Differentiable Convex Functions via Raina’s Fractional Integrals
4. Applications
4.1. Numerical Trapezoidal and Midpoint Quadrature Formula
4.2. Modified Bessel Function
4.3. q-Digamma Function
5. Visual Interpretation and Computational Evaluation
- In Figure 4a, we used the particular case from Example 2 when and are variables. The parameters r and m are varied over the interval to compare the left member (blue) and right member (magenta) of Theorem 4.
- In Figure 4b, the left side (blue) and right side (magenta) of Theorem 4 are compared by setting and varying r over the interval
- In Figure 4c, the left side (blue) and right sides (magenta) of Theorem 4 are compared by setting and varying m over the interval
- In Figure 5a, it is represented for parameters and the function f from Example 3 the graphic for the left member and the graphic for the right member of the inequality from Example 3 in 3D when . The parameters r and m are varied over the interval to compare the left member (blue) and right member (magenta) of Theorem 5.
- In Figure 5b, the left side (blue) and right side (magenta) of Theorem 5 are compared by setting and varying r over the interval
- In Figure 5c, the left side (blue) and right sides (magenta) of Theorem 5 from Example 3 are compared by setting and varying m over the interval
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magin, R. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32, 1. [Google Scholar]
- Atangana, A. Application of fractional calculus to epidemiology. In Fractional Dynamics; De Gruyter Open: Vienna, Austria, 2015; pp. 174–190. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Baleanu, D.; Güvenç, Z.B.; Machado, J.T. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10. [Google Scholar]
- Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y. Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 2008, 16, 798–812. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les Fonctions Convexes et les Inégalités entre les Valeurs Moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Dragomir, S.S. New Estimation of the Remainder in Taylor’s Formula using Grüss Type Inequalities and Applications. Math. Ineq. Appl. 1999, 2, 183–194. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les Propriétés des Fonctions entières et en particulier d’une Fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171–215. [Google Scholar]
- Hermite, C. Sur deux Limites d’une Intégrale Définie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal Formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Askey, R. The q-gamma and q-beta Functions. Appl. Anal. 1978, 8, 125–141. [Google Scholar] [CrossRef]
- Mercer, A.M. A Variant of Jensen’s Inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Podlubny, I. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Math. Sci. Eng. 1999, 198, 340. [Google Scholar]
- Wright, E.M. The asymptotic expanson of integral functions defined by Taylor series. I. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Wright, E.M. The asymptotic expanson of integral functions defined by Taylor series. II. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1941, 239, 217–232. [Google Scholar]
- Wright, E.M. The asymptotic expanson of integral functions and of the coefficientsin their Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 64, 409–438. [Google Scholar]
- Raina, R.K. On Generalized Wright’s Hypergeometric Functions and Fractional Calculus Operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Set, E.; Dragomir, S.S.; Gözpınar, A. Some Generalized Hermite-Hadamard Type Inequalities Involving Fractional Integral Operator Functions Whose Second Derivatives in Absolute Value Are s-Convex. RGMIA Res. Rep. Coll. 2017, 20, 14. [Google Scholar]
- Luke, Y.L. Special Functions and Their Approximations; Academic Press: Cambridge, MA, USA, 1969; Volume 2. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellen der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Luo, M.-J.; Raina, R.K. On Ostrowski Type Inequalities. Fasc. Math. 2016, 204, 5–27. [Google Scholar] [CrossRef]
- Set, E.; Çelik, B.; Özdemir, M.E.; Aslan, M. Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
- Benaissa, B.; Azzouz, N.; Budak, H. Parametrized inequalities based on three times differentiable functions. Bound. Value Probl. 2025, 2025, 45. [Google Scholar] [CrossRef]
- Stojiljković, V.; Mirkov, N.; Radenović, S. Variations in the tensorial trapezoid type inequalities for convex functions of self-adjoint operators in Hilbert spaces. Symmetry 2024, 16, 121. [Google Scholar] [CrossRef]
- Ali, M.A.; Sitthiwirattham, T.; Köbis, E.; Hanif, A. Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications. Axioms 2024, 13, 114. [Google Scholar] [CrossRef]
- Tatar, M.C.; Yildiz, C. Some New Estimates for Hermite-Hadamard-Jensen-Mercer Type Inequalities. Turk. J. Sci. 2021, 9, 225–240. [Google Scholar]
- Ciurdariu, L.; Grecu, E. Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions. Axioms 2024, 13, 413. [Google Scholar] [CrossRef]
- Hussain, T.; Ciurdariu, L.; Grecu, E. A New Inclusion on Inequalities of the Hermite–Hadamard–Mercer Type for Three-Times Differentiable Functions. Mathematics 2024, 12, 3711. [Google Scholar] [CrossRef]
- Hussain, T.; Ciurdariu, L.; Grecu, E. New Perspectives of Hermite-Hadmard-Mercer Type Inequalities Associated with ψk-Raina’s Fractional Integrals for Differentiable Convex Functions. Fractal Fract. 2025, 9, 203. [Google Scholar] [CrossRef]
- Ali, M.A.; Hussain, T.; Iqbal, M.Z.; Ejaz, F. Inequalities of Hermite-Hadamard-Mercer Type for Convex Functions via K-Fractional Integrals. Int. J. Math. Model. Comput. 2020, 10, 227–238. [Google Scholar]
- Wang, J.R.; Li, X.; Feckan, M.; Zhou, Y. Hermite–Hadamard-Type Inequalities for Riemann-Liouville Fractional Integrals via Two Kinds of Convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New Inequalities of Hermite-Hadamard Type for Functions Whose Second Derivatives Absolute Values Are Quasi-Convex. Tamkang J. Math. 2010, 41, 353–359. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A new Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modifications of certain fractional integral inequalities for convex function. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Milton, K.A.; Parashar, P.; Brevik, I.; Kennedy, G. Self-stress on a dielectric ball and Casimir-Polder forces. Ann. Phys. 2020, 412, 168008. [Google Scholar] [CrossRef]
- Parashar, P.; Milton, K.A.; Shajesh, K.V.; Brevik, I. Electromagnetic delta-function sphere. Phys. Rev. D 2017, 96, 085010. [Google Scholar] [CrossRef]
- Brevik, I.; Marachevsky, V.N. Casimir surface force on a dilute dielectric ball. Phys. Rev. D 1999, 60, 085006. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Baleanu, D.; Kashuri, A.; Hamassalh, F.; Agarwal, P. New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions. J. Inequalities Appl. 2020, 2020, 263. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1922; Volume 2. [Google Scholar]
- Jain, S.; Mehrez, K.; Baleanu, D.; Agarwal, P. Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications. Mathematics 2019, 7, 163. [Google Scholar] [CrossRef]
l | q | |||||
---|---|---|---|---|---|---|
i = 1 | 1.5627 | 1.1214 | 1.2595 | 1.7209 | 108.8025 | 287.4075 |
i = 2 | 2.3293 | 1.0863 | 2.2709 | 1.1341 | 495.7516 | 1277.7 |
i = 3 | 1.9364 | 1.8493 | 1.4979 | 1.3664 | 229.3053 | 506.7888 |
i = 4 | 1.8796 | 2.2467 | 1.8457 | 2.4613 | 539.3167 | 1402.9 |
i = 5 | 2.4675 | 2.4944 | 1.2650 | 1.2438 | 148.9598 | 268.0879 |
i = 6 | 1.4573 | 1.2078 | 1.9632 | 2.3213 | 536.6874 | 1642.3 |
i = 7 | 2.2115 | 1.9101 | 1.4208 | 1.8613 | 172.9154 | 412.3582 |
i = 8 | 2.2060 | 1.7510 | 2.0465 | 2.5938 | 498.1211 | 1435.7 |
i = 9 | 1.6087 | 1.0190 | 2.1027 | 1.1251 | 561.3629 | 1437.5 |
i = 10 | 1.9085 | 1.5394 | 2.1970 | 1.7083 | 681.8574 | 1908.2 |
r | m | |||
---|---|---|---|---|
i = 1 | 5.1663 | 2.2093 | 17.4693 | 56.8169 |
i = 2 | 5.5761 | 5.8677 | 2.5036 | 4.0889 |
i = 3 | 2.0714 | 5.8073 | 1.0948 | 1.3015 |
i = 4 | 5.6102 | 3.6824 | 5.5705 | 12.2446 |
i = 5 | 4.3456 | 5.1013 | 2.1823 | 3.3814 |
i = 6 | 1.9389 | 2.1385 | 2.3557 | 3.7589 |
i = 7 | 2.7532 | 3.3979 | 2.0593 | 3.1203 |
i = 8 | 3.9610 | 5.6208 | 1.1775 | 2.5444 |
i = 9 | 5.8088 | 5.0649 | 3.2939 | 5.9693 |
i = 10 | 5.8420 | 5.8177 | 2.6990 | 4.5363 |
r | m | q | p | |||
---|---|---|---|---|---|---|
i = 1 | 3.4743 | 2.7421 | 4.8807 | 1.2577u | 0.3345 | 1.0612 |
i = 2 | 3.2170 | 4.5587 | 2.6479 | 1.6068 | 0.1993 | 0.5093 |
i = 3 | 4.9448 | 4.4479 | 3.7768 | 1.3601 | 0.2898 | 0.8761 |
i = 4 | 5.0784 | 2.2318 | 4.6458 | 1.2743 | 0.8505 | 4.3323 |
i = 5 | 2.3409 | 2.0355 | 5.5091 | 1.2218 | 0.3003 | 0.8923 |
i = 6 | 3.7039 | 3.7426 | 5.8168 | 1.2076 | 0.2590 | 0.7108 |
i = 7 | 3.5051 | 5.8188 | 3.9625 | 1.3376 | 0.1812 | 0.4256 |
i = 8 | 4.4084 | 3.0317 | 2.1238 | 1.8898 | 0.3976 | 1.5402 |
i = 9 | 4.6921 | 4.1337 | 2.1718 | 1.8534 | 0.2962 | 0.9697 |
i = 10 | 4.8961 | 2.5072 | 2.6588 | 1.6029 | 0.6307 | 2.9945 |
r | m | q | |||
---|---|---|---|---|---|
i = 1 | 3.6690682 | 5.1210082 | 2.9391196 | 0.0014183 | 0.0045221 |
i = 2 | 2.1986177 | 3.5589553 | 3.4126342 | 0.0015168 | 0.0045541 |
i = 3 | 5.6108644 | 2.9667651 | 5.2847761 | 0.0006429 | 0.0046287 |
i = 4 | 5.7791487 | 3.6156485 | 2.0616137 | 0.0007820 | 0.0044964 |
i = 5 | 3.9634563 | 2.3858181 | 2.1720952 | 0.0007498 | 0.0045240 |
i = 6 | 3.9570105 | 2.5278931 | 2.6759601 | 0.0007996 | 0.0045751 |
i = 7 | 3.3508776 | 5.7682023 | 4.5964618 | 0.0015554 | 0.0046027 |
i = 8 | 5.6002153 | 5.8245381 | 4.9268895 | 0.0012011 | 0.0046202 |
i = 9 | 3.4769871 | 4.3008343 | 4.5909838 | 0.0013324 | 0.0046120 |
i = 10 | 2.4448110 | 2.2391181 | 3.8036948 | 0.0010997 | 0.0046051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, T.; Ciurdariu, L.; Grecu, E. Evolutionary Approach to Inequalities of Hermite–Hadamard–Mercer Type for Generalized Wright’s Functions Associated with Computational Evaluation and Their Applications. Fractal Fract. 2025, 9, 593. https://doi.org/10.3390/fractalfract9090593
Hussain T, Ciurdariu L, Grecu E. Evolutionary Approach to Inequalities of Hermite–Hadamard–Mercer Type for Generalized Wright’s Functions Associated with Computational Evaluation and Their Applications. Fractal and Fractional. 2025; 9(9):593. https://doi.org/10.3390/fractalfract9090593
Chicago/Turabian StyleHussain, Talib, Loredana Ciurdariu, and Eugenia Grecu. 2025. "Evolutionary Approach to Inequalities of Hermite–Hadamard–Mercer Type for Generalized Wright’s Functions Associated with Computational Evaluation and Their Applications" Fractal and Fractional 9, no. 9: 593. https://doi.org/10.3390/fractalfract9090593
APA StyleHussain, T., Ciurdariu, L., & Grecu, E. (2025). Evolutionary Approach to Inequalities of Hermite–Hadamard–Mercer Type for Generalized Wright’s Functions Associated with Computational Evaluation and Their Applications. Fractal and Fractional, 9(9), 593. https://doi.org/10.3390/fractalfract9090593