Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations
Abstract
1. Introduction
2. Preliminaries
- (2) Every with coefficient e is an with coefficient .
- if, for all ,
3. Main Results
- Case-1: and ,
4. Some Applications on Fractional Integrals
4.1. Application to Riemann–Liouville Fractional Integrals
4.2. Application to Atangana–Baleanu Fractional Integrals
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Cal. Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, 2009, 917175. [Google Scholar] [CrossRef]
- Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef]
- Mustafa, Z.; Awawdeh, F.; Shatanawi, W. Fixed point theorem for expansive mappings in G-metric spaces. Int. J. Contemp. Math. Sci. 2010, 5, 2463–2472. [Google Scholar]
- Saleem, N.; Yildirim, I.; Gursac, N.; Hussain, A. Interpolative type contraction mappings in G-metric spaces. Int. J. Nonlinear Anal. Appl. 2024, 15, 453–464. [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat 2014, 28, 1087–1101. [Google Scholar] [CrossRef]
- Ege, O. Some fixed point theorems in complex valued Gb-metric spaces. J. Nonlinear Convex Anal. 2017, 18, 1997–2005. [Google Scholar]
- Ege, O.; Park, C.; Ansari, A.H. A different approach to complex valued Gb-metric spaces. Adv. Differ. Equ. 2011, 2020, 152. [Google Scholar] [CrossRef]
- Aydi, H.; Rakic, D.; Aghajani, A.; Dosenovic, T.; Salmi Md Noorani, M.; Qawaqneh, H. On fixed point results in Gb-metric spaces. Mathematics 2019, 7, 617. [Google Scholar] [CrossRef]
- Zhao, Y.; He, F.; Lu, S. Several fixed-point theorems for generalized Ciric-type contraction in Gb-metric spaces. AIMS Math. 2014, 9, 22393–22413. [Google Scholar] [CrossRef]
- Li, C.; Cui, Y. Rectangular Gb-metric spaces and some fixed point theorems. Axioms 2022, 11, 108. [Google Scholar] [CrossRef]
- George, R.; Radenovic, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Hammad, H.A.; Aydi, H.; Mlaiki, N. Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators. Adv. Differ. Equ. 2021, 2021, 97. [Google Scholar] [CrossRef]
- Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 2016, 89, 447–454. [Google Scholar] [CrossRef]
- Gomez-Aguilar, J.F.; Atangana, A.; Morales-Delgado, V.V.F. Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 2017, 45, 1514–1533. [Google Scholar] [CrossRef]
- Ekiz Yazici, N.; Ege, O.; Mlaiki, N.; Mukheimer, A. Controlled S-metric-type spaces and applications to fractional integrals. Symmetry 2023, 15, 1100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, R.; Ege, O.; Ramaswamy, R. Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal Fract. 2025, 9, 527. https://doi.org/10.3390/fractalfract9080527
Ramadan R, Ege O, Ramaswamy R. Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal and Fractional. 2025; 9(8):527. https://doi.org/10.3390/fractalfract9080527
Chicago/Turabian StyleRamadan, Rende, Ozgur Ege, and Rajagopalan Ramaswamy. 2025. "Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations" Fractal and Fractional 9, no. 8: 527. https://doi.org/10.3390/fractalfract9080527
APA StyleRamadan, R., Ege, O., & Ramaswamy, R. (2025). Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal and Fractional, 9(8), 527. https://doi.org/10.3390/fractalfract9080527