Next Article in Journal
The Impact of Elastoplastic Deformation Behavior on the Apparent Gas Permeability of Deep Fractal Shale Rocks
Previous Article in Journal
Arithmetic Harris Hawks-Based Effective Battery Charging from Variable Sources and Energy Recovery Through Regenerative Braking in Electric Vehicles, Implying Fractional Order PID Controller
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations

1
Natural Science Institute, Ege University, Bornova 35100, Izmir, Turkey
2
Department of Mathematics, Ege University, Bornova 35100, Izmir, Turkey
3
Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2025, 9(8), 527; https://doi.org/10.3390/fractalfract9080527
Submission received: 26 June 2025 / Revised: 29 July 2025 / Accepted: 11 August 2025 / Published: 13 August 2025

Abstract

In this work, we prove some fixed point theorems in rectangular G b -metric space, which is the generalization of rectangular metric space and G b -metric space. Moreover, we give some examples to support our theoretical findings. Finally, using our main results, we present some applications to obtain solutions of Riemann–Liouville and Atangana–Baleanu fractional integral equations.

1. Introduction

In recent decades, the rapid growth of fixed point theory in metric spaces and the prominent interest of researchers in this field evidence that it is a very important field in modern mathematics, particularly in the branch of nonlinear functional analysis thanks to its wide applications. When we say fixed point theory, we should not forget that the Banach contraction principle [1] is the cornerstone of this field. After Banach laid out this contraction type, many researchers have generalized and extended it, such as the Kannan type [2], Chatterjea type [3], Hardy–Rogers type [4], etc.
On the other hand, researchers are also interested in enriching the literature with new metric space generalizations. For instance, b-metric [5,6] and G-metric space were described by Mustafa and Sims [7]; in 2009, the same authors, in [8], demonstrated some fixed point theorems in G-metric spaces. Afterwards, researchers have obtained many important results; for example, [9,10,11]. In 2014, inspired by the b-metric and G-metric, Aghajani et al. [12] presented G b -metric space. Researchers have since proven many fixed point results in G b -metric spaces. For example, Ege [13] proves a common fixed point theorem in complex valued G b -metric spaces using the concept of α -series. For some other works on this topic, see [14,15,16]. In 2022, Li and Cui [17] introduced the concept of rectangular G b -metric space and obtained some important fixed point theorems. Also, the authors have presented the concept of convex rectangular G b -metric space and have proved some fixed points of enriched type contractions in this space.
The outline of this work is given as follows: Section 2, we provide some required information on the paper. In Section 3, we prove Hardy–Rogers-, Kannan-, and Chatterjea-type fixed point results using a weakly G-contraction function. Finally, we give two applications.

2. Preliminaries

First, we give the required background on rectangular G b -metric spaces.
Definition 1
([6]). Let E be a nonempty set. A function B: E 2 [ 0 , ) is named b-metric and ( E , B ) is named a b-metric space ( B M S ) if, for each ν , ι , μ E , it satisfies
( B 1 ) B ( ν , ι ) = 0 iff ν = ι ,
( B 2 ) B ( ν , ι ) = B ( ι , ν ) ,
( B 3 ) B ( ν , ι ) s [ B ( ν , μ ) + B ( μ , ι ) ] for some constant s 1 .
Definition 2
([18]). Let E be a nonempty set. A function R B : E 2 [ 0 , ) is named rectangular b-metric and ( E , R B ) is named a rectangular b-metric space ( R B M S ) if it satisfies the conditions below:
( R B 1 ) B ( ν , ι ) = 0 iff ν = ι ,
( R B 2 ) B ( ν , ι ) = B ( ι , ν ) , for all ν , ι E ,
( R B 3 ) there exists a real number s 1 such that B ( ν , ι ) s [ B ( ν , μ ) + B ( μ , α ) + B ( α , ι ) ] for all ν , ι E and for all distinct points μ , α E { ν , ι } .
Definition 3
([7]). Let E be a nonempty set. A function G: E 3 [ 0 , ) is named G-metric and ( E , G ) is named a G-metric space ( G M S ) if, for each ν , ι , μ , α E it satisfies
( G 1 ) G ( ν , ι , μ ) = 0 if ν = ι = μ ,
( G 2 ) 0 < G ( ν , ν , ι ) , ν , ι E with ν ι ,
( G 3 ) G ( ν , ι , ι ) G ( ν , ι , μ ) , ν , ι , μ E with ι μ ,
( G 4 ) G ( ν , ι , μ ) = G ( ν , μ , ι ) = G ( μ , ν , ι ) = G ( μ , ι , ν ) = G ( ι , μ , ν ) = G ( ι , ν , μ ) ,
( G 5 ) G ( ν , ι , μ ) G ( ν , α , α ) + G ( α , ι , μ ) .
Definition 4
([17]). Let E be a nonempty set. A function R G : E 3 [ 0 , ) is named rectangular G-metric and ( E , R G ) is named a rectangular G-metric space ( R G M S ) if, for each ν , ι , μ , E , it satisfies
( R G 1 ) R G ( ν , ι , μ ) = 0 if ν = ι = μ ,
( R G 2 ) 0 < R G ( ν , ν , ι ) , ν , ι E with ν ι ,
( R G 3 ) R G ( ν , ι , ι ) R G ( ν , ι , μ ) , ν , ι , μ E with ι μ ,
( R G 4 ) R G ( ν , ι , μ ) = R G ( ν , μ , ι ) = R G ( μ , ν , ι ) = R G ( μ , ι , ν ) = R G ( ι , μ , ν ) = R G ( ι , ν , μ ) ,
( R G 5 ) R G ( ν , ι , μ ) R G ( ν , α , α ) + R G ( α , ρ , ρ ) + R G ( ρ , ι , μ ) for all α ρ , α , ρ E { ν , ι } .
Definition 5
([12]). Let E be a nonempty set. A function G b : E 3 [ 0 , ) is named G b -metric and ( E , G b ) is named a G b -metric space ( G B M S ) if, for each ν , ι , μ , α E it satisfies
( G b 1 ) G b ( ν , ι , μ ) = 0 if ν = ι = μ ,
( G b 2 ) 0 < G b ( ν , ι , ι ) , ν , ι E with ν ι ,
( G b 3 ) G b ( ν , ν , ι ) G b ( ν , ι , μ ) , ν , ι , μ E with ι μ ,
( G b 4 ) G b ( ν , ι , μ ) = G b ( ν , μ , ι ) = G b ( μ , ν , ι ) = G b ( μ , ι , ν ) = G b ( ι , μ , ν ) = G b ( ι , ν , μ ) ,
( G b 5 ) G b ( ν , ι , μ ) e [ G b ( ν , α , α ) + G b ( α , ι , μ ) ] for a given real number e 1 .
Remark 1.
It is easy to see that when e = 1 , every ( G B M S ) is just a ( G M S ) . But every ( G B M S ) does not need to be a ( G M S ) .
Definition 6
([17]). Let E be a nonempty set. A function R G b : E 3 [ 0 , ) is named rectangular G b -metric and ( E , R G ) is named a R G b -metric space ( R G B M S ) if, for each ν , ι , μ E , it satisfies
( R G b 1 ) R G b ( ν , ι , μ ) = 0 if ν = ι = μ ,
( R G b 2 ) 0 < R G b ( ν , ν , ι ) , ν , ι E with ν ι ,
( R G b 3 ) R G b ( ν , ν , ι ) R G b ( ν , ι , μ ) , ν , ι , μ E with ι μ ,
( R G b 4 ) R G b ( ν , ι , μ ) = R G b ( ν , μ , ι ) = R G b ( μ , ν , ι ) = R G b ( μ , ι , ν ) = R G b ( ι , μ , ν ) = R G b ( ι , ν , μ ) ,
( R G b 5 ) there exists a real number e 1 such that R G b ( ν , ι , μ ) e [ R G b ( ν , α , α ) + R G b ( α , ρ , ρ ) + R G b ( ρ , ι , μ ) ] for all α ρ , α , ρ E { ν , ι } .
Remark 2
([17]). (1) It is easy to see that when e = 1 , every ( R G B M S ) is a ( R G M S ) .
  • (2) Every ( G B M S ) with coefficient e is an ( R G B M S ) with coefficient e 2 .
Example 1
([17]). Let E = R and the function R G b : E 3 [ 0 , ) defined by
R G b ( ν , ι , μ ) = ( | ν ι | + | ι μ | + | μ ν | ) u , ( u 1 ) .
Then ( E , R G b ) is a ( R G B M S ) with e = 3 u 1 .
Example 2.
Let E = { 1 n : n 2 , n N } Z + and define R G b : E 3 [ 0 , ) such that
R G b ( ν , ι , μ ) = R G b ( ν , μ , ι ) = R G b ( μ , ν , ι ) = R G b ( μ , ι , ν ) = R G b ( ι , μ , ν ) = R G b ( ι , ν , μ )
for all ν , ι , μ E and
R G b ( ν , ι , μ ) = 0 , i f   ν = ι = μ 3 t , i f   ν ι μ ,   f o r   a l l   ν , ι , μ Z + t n + 1 , i f   ν Z +   a n d     ι , μ { 1 n : n = 2 , 3 , } t , o t h e r w i s e ,
where t > 0 is a constant. Then ( E , R G b ) is a ( R G B M S ) with coefficient e = 2 . However ( E , R G b ) is not a ( R G M S ) since
R G b ( 1 , 2 , 3 ) R G b ( 1 , 1 2 , 1 2 ) + R G b ( 1 2 , 1 3 , 1 3 ) + R G b ( 1 3 , 2 , 3 ) 3 t t 3 + t + t 3 t > 7 t 3 .
Definition 7
([17]). If R G b ( ν , ι , ι ) = R G b ( ι , ι , ν ) for all ν , ι E , then we say the R G b -metric is a symmetric rectangular G b -metric.
Definition 8
([17]). Let ( E , R G b ) be an ( R G B M S ) . Consider a sequence { λ n } in E and a point λ E . Then
(1) if for any δ > 0 , given a positive integer l 0 N such that R G b ( λ n , λ q , λ ) < δ for all n , q l 0 , we say { λ n } is a R G b -convergent in E to λ,
(2) if for any δ > 0 , given a positive integer l 0 N such that R G b ( λ n , λ q , λ l ) < δ for all q , n , l l 0 , we say { λ n } is a R G b -Cauchy in E,
(3) if every R G b -Cauchy sequence in E converges to some λ in E, we say ( E , R G b ) is a complete ( R G B M S ) .
Definition 9
Let ( E , R G b ) and ( E , R G b ) be two rectangular G b -metric spaces. A mapping g : E E is R G b -continuous at a point λ E if and only if it is R G b -sequentially continuous at λ, meaning that, when a sequence λ n is convergent to λ in E, then the sequence g ( λ n ) is convergent to g ( λ ) in E .
Definition 10
([9]). Let ψ be a function defined by ψ : [ 0 , ) [ 0 , ) and let the properties below be satisfied. Then, ψ is an altering distance function.
(1) ψ is continuous and increasing;
(2) ψ ( v ) = 0 if and only if v = 0 .
Definition 11
([9]). Let ( E , G ) be a ( G M S ) and H : E E be a function satisfying
  • if, for all ν , ι , μ E ,
ψ ( G ( H ν , H ι , H μ ) ) ψ 1 3 [ G ( ν , H ι , H ι ) + G ( ι , H μ , H μ ) + G ( μ , H ν , H ν ) ] ϕ G ( ν , H ι , H ι ) , G ( ι , H μ , H μ ) , G ( μ , H ν , H ν ) ,
where ϕ : [ 0 , ) 3 [ 0 , ) is a continuous function with ϕ ( ν , ι , μ ) = 0 iff ν = ι = μ . We say H is a weakly G-contraction type function.
Proposition 1
([17]). Let ( E , R G b ) be an ( R G B M S ) and δ > 0 , then for each ν , ι , μ E ,
(1) if R G b ( ν , ι , μ ) = 0 , then ν = ι = μ ,
(2) if R G b ( λ n , λ q , λ l ) < δ for any n , q , l N , then R G b ( λ n , λ q , λ q ) < δ and R G b ( λ n , λ n , λ q ) < δ .
Lemma 1
([17]). Let ( E , R G b ) be an ( R G B M S ) with the coefficient e 1 , H : E E a self-mapping and λ n a sequence in E defined by λ n + 1 = H λ n such that
R G b ( λ n , λ n + 1 , λ n + 2 ) κ R G b ( λ n 1 , λ n , λ n + 1 ) ,
where κ [ 0 , 1 ) and n N . Then λ n is a R G b -Cauchy sequence in E.
Theorem 1
([17]). Let ( E , R G b ) be a complete ( R G B M S ) with a coefficient e 1 , for all ν , ι , μ E and the function H : E E satisfy the condition below:
R G b ( H ν , H ι , H μ ) θ R G b ( ν , ι , μ ) ,
where θ ( 0 , 1 ] is a constant. Then H has a unique fixed point in E.

3. Main Results

In this section, we prove various fixed point theorems in ( R G B M S ) . Firstly, we begin with the Hardy–Rogers type fixed point theorem.
Theorem 2.
Let ( E , R G b ) be a complete ( R G B M S ) with a coefficient e 1 , for all ν , ι , μ E and the function H : E E satisfy the condition below:
R G b ( H ν , H ι , H μ ) a 1 R G b ( ν , ι , μ ) + a 2 R G b ( ν , H ν , H ν ) + a 3 R G b ( ι , H ι , H ι ) + a 4 R G b ( μ , H μ , H μ ) + a 5 R G b ( ν , H ι , H ι ) + a 6 R G b ( ι , H μ , H μ ) + a 7 G ( μ , H ν , H ν ) ,
where i = 1 7 a i < 1 and e ( a 3 + a 4 + a 6 ) < 1 , then H has a unique fixed point in E.
Proof. 
Let λ 0 E and define a sequence λ n in E by H λ n 1 = λ n , n N * . If λ n 1 = λ n , then λ n is the fixed point of H. So, we assume that λ n 1 λ n , n N * . It follows from the inequality (3) and ( R G b 4 ) and ( R G b 3 ) in (6) that
R G b ( λ n , λ n + 1 , λ n + 2 ) = R G b ( H λ n 1 , H λ n , H λ n + 1 ) a 1 R G b ( λ n 1 , λ n , λ n + 1 ) + a 2 R G b ( λ n 1 , H λ n 1 , H λ n 1 ) + a 3 R G b ( λ n , H λ n , H λ n ) + a 4 R G b ( λ n + 1 , H λ n + 1 , H λ n + 1 ) + a 5 R G b ( λ n 1 , H λ n , H λ n ) + a 6 R G b ( λ n , H λ n + 1 , H λ n + 1 ) + a 7 R G b ( λ n + 1 , H λ n 1 , H λ n 1 ) = a 1 R G b ( λ n 1 , λ n , λ n + 1 ) + a 2 R G b ( λ n 1 , λ n , λ n ) + a 3 R G b ( λ n , λ n + 1 , λ n + 1 ) + a 4 R G b ( λ n + 1 , λ n + 2 , λ n + 2 ) + a 5 R G b ( λ n 1 , λ n + 1 , λ n + 1 ) + a 6 R G b ( λ n , λ n + 2 , λ n + 2 ) + a 7 R G b ( λ n + 1 , λ n , λ n ) a 1 R G b ( λ n 1 , λ n , λ n + 1 ) + a 2 R G b ( λ n , λ n , λ n 1 ) + a 3 R G b ( λ n + 1 , λ n + 1 , λ n ) + a 4 R G b ( λ n + 2 , λ n + 2 , λ n + 1 ) + a 5 R G b ( λ n + 1 , λ n + 1 , λ n 1 ) + a 6 R G b ( λ n + 2 , λ n + 2 , λ n ) + a 7 R G b ( λ n , λ n , λ n + 1 ) a 1 R G b ( λ n 1 , λ n , λ n + 1 ) + a 2 R G b ( λ n 1 , λ n , λ n + 1 ) + a 3 R G b ( λ n , λ n + 1 , λ n + 2 ) + a 4 R G b ( λ n , λ n + 1 , λ n + 2 ) + a 5 R G b ( λ n 1 , λ n , λ n + 1 ) + a 6 R G b ( λ n , λ n + 1 , λ n + 2 ) + a 7 R G b ( λ n , λ n + 1 , λ n + 2 ) .
Hence, we have
R G b ( λ n , λ n + 1 , λ n + 2 ) ( a 1 + a 2 + a 5 ) ( 1 a 3 a 4 a 6 a 7 ) R G b ( λ n 1 , λ n , λ n + 1 ) .
Let k = ( a 1 + a 2 + a 5 ) ( 1 a 3 a 4 a 6 a 7 ) , where k [ 0 , 1 ) . Now, let we see that λ n λ n + t for all t 2 . Indeed, if λ n = λ n + t by (3), we get
R G b ( λ n , λ n + 1 , λ n + 1 ) = R G b ( λ n , H λ n , H λ n + 1 ) = R G b ( λ n + t , H λ n + t , H λ n + t ) k t 1 R G b ( λ n , λ n + 1 , λ n + 1 )
a contradiction. So let λ n λ q for all n q . By Lemma 1, λ n is a Cauchy sequence in E. Since ( E , R G b ) is a complete ( R G B M S ) , for any δ > 0 let a given n 0 N and j E such that
R G b ( λ n , λ q , j ) < δ 5 e ( 1 + a 1 + a 2 + a 5 + a 7 ) , n , q n 0
and from Proposition 1, we can write the following:
R G b ( j , λ n , λ n ) < δ 5 e , R G b ( λ n , j , j ) < δ 5 a 1 e , R G b ( λ n , λ n + 1 , λ n + 1 ) < δ 5 ( 1 + a 2 ) e ,
R G b ( j , λ n + 1 , λ n + 1 ) < δ 5 a 7 e , n n 0 .
In addition, from Theorem 1, we obtain R G b ( λ n , H j , H j ) = R G b ( H λ n 1 , H j , H j ) θ R G b ( λ n 1 , j , j ) < θ δ 5 a 5 e , n n 0 .
Now, for any n N , by ( R G b 5 ) in (6) and (3), we have
R G b ( j , H j , H j ) e [ R G b ( j , λ n , λ n ) + R G b ( λ n , λ n + 1 , λ n + 1 ) + R G b ( λ n + 1 , H j , H j ) ] e R G b ( j , λ n , λ n ) + e R G b ( λ n , λ n + 1 , λ n + 1 ) + e a 1 R G b ( λ n , j , j ) + e a 2 R G b ( λ n , H λ n , H λ n ) + e a 3 R G b ( j , H j , H j ) + e a 4 R G b ( j , H j , H j ) + e a 5 R G b ( λ n , H j , H j ) + e a 6 R G b ( j , H j , H j ) + e a 7 R G b ( j , H λ n , H λ n ) ( 1 e ( a 3 + a 4 + a 6 ) ) R G b ( j , H j , H j ) < e [ R G b ( j , λ n , λ n ) + ( 1 + a 2 ) R G b ( λ n , λ n + 1 , λ n + 1 ) + a 1 R G b ( λ n , j , j ) + a 5 R G b ( λ n , H j , H j ) + a 7 R G b ( j , λ n + 1 , λ n + 1 ) ] ( 1 e ( a 3 + a 4 + a 6 ) ) R G b ( j , H j , H j ) e [ δ 5 e + ( 1 + a 2 ) δ 5 ( 1 + a 2 ) e + a 1 δ 5 a 1 e + a 5 θ δ 5 a 5 e + a 7 δ 5 a 7 e ] δ ( 4 + θ ) 5 δ .
Since e ( a 3 + a 4 + a 6 ) < 1 ,
R G b ( j , H j , H j ) < δ 1 e ( a 3 + a 4 + a 6 ) ,
we deduce that R G b ( j , H j , H j ) = 0 , that is, H j = j . So j is a fixed point of H.
Now, let us see that j is a unique fixed point of H. If there exists another fixed point such that j m , by (3) and ( R G b 4 ) in (6), we have
R G b ( j , j , m ) a 1 R G b ( j , j , m ) + a 2 R G b ( j , H j , H j ) + a 3 R G b ( j , H j , H j ) + a 4 R G b ( m , H m , H m ) + a 5 R G b ( j , H j , H j ) + a 6 R G b ( j , H m , H m ) + a 7 R G b ( m , H j , H j ) ( a 1 + a 7 ) R G b ( j , j , m ) + a 6 R G b ( j , m , m ) ( a 1 + a 6 + a 7 ) max { R G b ( j , j , m ) , R G b ( j , m , m ) } max { R G b ( j , j , m ) , R G b ( j , m , m ) } ( a 1 + a 6 + a 7 ) max { R G b ( j , j , m ) , R G b ( j , m , m ) } .
Similarly, we obtain
R G b ( j , m , m ) a 1 R G b ( j , m , m ) + a 2 R G b ( j , H j , H j ) + a 3 R G b ( m , H m , H m ) + a 4 R G b ( m , H m , H m ) + a 5 R G b ( j , H m , H m ) + a 6 R G b ( m , H m , H m ) + a 7 R G b ( m , H j , H j ) ( a 1 + a 5 ) R G b ( j , m , m ) + a 7 R G b ( m , j , j ) ( a 1 + a 5 + a 7 ) max { R G b ( j , j , m ) , R G b ( j , m , m ) } ( a 1 + a 5 + a 6 + a 7 ) max { R G b ( j , j , m ) , R G b ( j , m , m ) } .
Then, we find
max { R G b ( j , j , m ) , R G b ( j , m , m ) } ( a 1 + a 5 + a 6 + a 7 ) max { R G b ( j , j , m ) , R G b ( j , m , m ) } .
Since ( a 1 + a 6 + a 7 ) < 1 , we find max { R G b ( j , j , m ) , R G b ( j , m , m ) } = 0 . Therefore
R G b ( j , j , m ) = R G b ( j , m , m ) = 0 ,
which means that j = m . □
We remark that the Kannan- and Chatterjea-type fixed point results in ( R G B M S ) are just corollaries of Theorem 2.
Corollary 1.
Let ( E , R G b ) be a complete ( R G B M S ) with coefficient e 1 and the function H : E E . Suppose there exists γ [ 0 , 1 max { 2 e , 3 } ) such that
R G b ( H ν , H ι , H μ ) γ { R G b ( ν , H ν , H ν ) + R G b ( ι , H ι , H ι ) + R G b ( μ , H μ , H μ ) } .
Then H has a unique fixed point in E.
Proof. 
The assertion follows when we take a 1 = a 5 = a 6 = a 7 = 0 and a 2 = a 3 = a 4 = γ in Theorem 2. □
Corollary 2.
Let ( E , R G b ) be a complete ( R G B M S ) with the coefficient e 1 and H : E E a self-mapping. Suppose there exists γ [ 0 , 1 2 e + 1 ) such that
R G b ( H ν , H ι , H μ ) γ { R G b ( ν , H ι , H ι ) + R G b ( ι , H μ , H μ ) + R G b ( μ , H ν , H ν ) } ,
then H has a unique fixed point in E.
Proof. 
The assertion follows when we take a 1 = a 2 = a 3 = a 4 = 0 and a 5 = a 6 = a 7 = γ in Theorem 2. □
The next example is given to support Theorem 2.
Example 3.
We will use the same (RGBMS) as in Example 1. Let ( E , R G b ) be a ( R G B M S ) where E = R and R G b : E 3 [ 0 , ) defined by
R G b ( ν , ι , μ ) = ( | ν ι | + | ι μ | + | μ ν | ) 2 .
Consider a function H : E E defined by
H ( t ) = t 2 + 3
for all t E . If we take a 1 = 0.3 ,   a 2 = 0.2 ,   a 3 = 0.01 ,   a 4 = 0.02 ,   a 5 = 0.1 ,   a 6 = 0.05 , and a 7 = 0.15 , we find that the conditions below are satisfied:
i = 1 7 a i = 0.83 < 1 a n d e ( a 3 + a 4 + a 6 ) = 0.24 < 1 ,
and for all ν , ι , μ E ,
R G b ( H ν , H ι , H μ ) = R G b ( ν 2 + 3 , ι 2 + 3 , μ 2 + 3 ) = 1 4 ( | ν ι | + | ι μ | + | ν μ | ) 2 0.3 ( | ν ι | + | ι μ | + | ν μ | ) 2 = 0.3 R G b ( ν , ι , μ ) 0.3 R G b ( ν , ι , μ ) + 0.2 R G b ( ν , H ν , H ν ) + 0.01 R G b ( ι , H ι , H ι ) + 0.02 R G b ( μ , H μ , H μ ) + 0.1 R G b ( ν , H ι , H ι ) + 0 , 05 R G b ( ι , H μ , H μ ) + 0.15 G ( μ , H ν , H ν ) .
Hence, it is easy to see that Theorem 2 is verified and so H has a unique fixed point as 6.
Example 4.
Let E = { 1 2 } [ 1 , 2 , 3 , 4 ] and R G b : E 3 [ 0 , ) be a function such that
R G b ( ν , ι , μ ) = R G b ( ν , μ , ι ) = R G b ( μ , ν , ι ) = R G b ( μ , ι , ν ) = R G b ( ι , μ , ν ) = R G b ( ι , ν , μ )
for all ν , ι , μ E and
R G b ( ν , ι , μ ) = 0 , if ν = ι = μ 3 , if ν = 1 2 , ι , μ [ 1 , 2 , 3 , 4 ] 1 , otherwise .
Then ( E , R G b ) is a ( R G B M S ) with coefficient e = 1 . Consider a function H : E E defined as follows:
H ( t ) = 1 , if t [ 1 , 2 , 3 , 4 ] 2 , if t = 1 2 .
For γ ( 0 , 1 3 ) , we have the following cases:
  • Case-1: ν = 1 2 and ι , μ [ 2 , 3 , 4 ] ,
R G b ( H ν , H ι , H μ ) γ { R G b ( ν , H ν , H ν ) + R G b ( ι , H ι , H ι ) + R G b ( μ , H μ , H μ ) } R G b ( 2 , 1 , 1 ) γ { R G b ( 1 2 , 2 , 2 ) + R G b ( ι , 1 , 1 ) + R G b ( μ , 1 , 1 ) } 1 γ [ 3 + 1 + 1 ] .
Case-2: ν = 1 2 and ι = μ = 1 ,
R G b ( H ν , H ι , H μ ) γ { R G b ( ν , H ν , H ν ) + R G b ( ι , H ι , H ι ) + R G b ( μ , H μ , H μ ) } R G b ( 2 , 1 , 1 ) γ { R G b ( 1 2 , 2 , 2 ) + R G b ( 1 , 1 , 1 ) + R G b ( 1 , 1 , 1 ) } 1 γ [ 3 + 0 + 0 ] .
Case-3: ν , ι , μ [ 1 , 2 , 3 , 4 ] ,
R G b ( H ν , H ι , H μ ) γ { R G b ( ν , H ν , H ν ) + R G b ( ι , H ι , H ι ) + R G b ( μ , H μ , H μ ) } R G b ( 1 , 1 , 1 ) γ { R G b ( ν , 1 , 1 ) + R G b ( ι , 1 , 1 ) + R G b ( μ , 1 , 1 ) } 0 γ { R G b ( ν , 1 , 1 ) + R G b ( ι , 1 , 1 ) + R G b ( μ , 1 , 1 ) } .
So we can say that the condition in Corollary 1 is verified in each case and hence H has a unique fixed point as 1.
Theorem 3.
Let ( E , R G b ) be a complete ( R G B M S ) with the coefficient e 1 , R G b be a continuous function, and H : E E be a mapping such that
ψ ( R G b ( H ν , H ι , H μ ) ) ψ 1 3 [ G ( ν , H ι , H ι ) + R G b ( ι , H μ , H μ ) + R G b ( μ , H ν , H ν ) ] ϕ R G b ( ν , H ι , H ι ) , R G b ( ι , H μ , H μ ) , R G b ( μ , H ν , H ν ) ,
where ψ is the altering distance function and ϕ : [ 0 , ) 3 [ 0 , ) is a continuous function with ϕ ( u , v , z ) = 0 iff u = v = z . Then, H has a unique fixed point in E.
Proof. 
Let λ 0 E and define a sequence λ n in E by H λ n 1 = λ n , n N * . If λ n 1 = λ n , then H has a fixed point. So suppose that λ n 1 λ n for all n N * . By (4), we get
ψ ( R G b ( λ n , λ n + 1 , λ n + 2 ) ) = ψ ( R G b ( H λ n 1 , H λ n , H λ n + 1 ) ψ ( 1 3 [ R G b ( λ n 1 , H λ n , H λ n ) + R G b ( λ n , H λ n + 1 , H λ n + 1 ) + R G b ( λ n + 1 , H λ n 1 , H λ n 1 ) ] ) ϕ ( R G b ( λ n 1 , H λ n , H λ n ) , R G b ( λ n , H λ n + 1 , H λ n + 1 ) , R G b ( λ n + 1 , H λ n 1 , H λ n 1 ) ) = ψ ( 1 3 [ R G b ( λ n 1 , λ n + 1 , λ n + 1 ) + R G b ( λ n , λ n + 2 , λ n + 2 ) + R G b ( λ n + 1 , λ n , λ n ) ] ) ϕ ( R G b ( λ n 1 , λ n + 1 , λ n + 1 ) , R G b ( λ n , λ n + 2 , λ n + 2 ) , R G b ( λ n + 1 , λ n , λ n ) ) .
From ( R G b 3 ) in (6), we have
ψ ( R G b ( λ n , λ n + 1 , λ n + 2 ) ) ψ ( 1 3 [ R G b ( λ n 1 , λ n , λ n + 1 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) ] ) ϕ ( R G b ( λ n 1 , λ n , λ n + 1 ) , R G b ( λ n , λ n + 1 , λ n + 2 ) , R G b ( λ n , λ n + 1 , λ n + 2 ) ) ,
and
ψ ( R G b ( λ n , λ n + 1 , λ n + 2 ) ) ψ 1 3 [ R G b ( λ n 1 , λ n , λ n + 1 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) ] .
Since ψ is an increasing function, we find
R G b ( λ n , λ n + 1 , λ n + 2 ) 1 3 [ R G b ( λ n 1 , λ n , λ n + 1 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) + R G b ( λ n , λ n + 1 , λ n + 2 ) ]
and so
R G b ( λ n , λ n + 1 , λ n + 2 ) R G b ( λ n 1 , λ n , λ n + 1 ) .
Therefore { R G b ( λ n , λ n + 1 , λ n + 2 ) : n N } is a nonincreasing sequence. Thus there exists ϑ 0 such that lim n R G b ( λ n , λ n + 1 , λ n + 2 ) = ϑ . Taking ( n ) in (6), we have
ϑ 1 3 l i m n R G b ( λ n 1 , λ n , λ n + 1 ) + 2 3 ϑ .
Hence
lim n R G b ( λ n , λ n + 1 , λ n + 2 ) ϑ .
If we take ( n ) in (5), we get
ψ ( ϑ ) ψ ( 1 3 ϑ + 1 3 ϑ + 1 3 ϑ ) ϕ ( ϑ , ϑ , ϑ ) ψ ( ϑ ) ψ ( ϑ ) ϕ ( ϑ , ϑ , ϑ ) ϕ ( ϑ , ϑ , ϑ ) 0 .
So ϕ ( ϑ , ϑ , ϑ ) = 0 , which means that ϑ = 0 . Therefore
lim n R G b ( λ n , λ n + 1 , λ n + 2 ) = 0 .
Next, we show that λ n is an R G b -Cauchy sequence in E. Let λ n λ q such that q < n . By (4), ( R G b 3 ) , ( R G b 4 ) , and ( R G b 5 ) in (6), we obtain
ψ ( R G b ( λ q , λ n , λ n ) ) = ψ ( R G b ( H λ q 1 , H λ n 1 , H λ n 1 ) ) ψ ( 1 3 [ R G b ( λ q 1 , H λ n 1 , H λ n 1 ) + R G b ( λ n 1 , H λ n 1 , H λ n 1 ) + R G b ( λ n 1 , H λ q 1 , H λ q 1 ) ] ) ϕ ( R G b ( λ q 1 , H λ n 1 , H λ n 1 ) , R G b ( λ n 1 , H λ n 1 , H λ n 1 ) , R G b ( λ n 1 , H λ q 1 , H λ q 1 ) ) = ψ 1 3 [ R G b ( λ q 1 , λ n , λ n ) + R G b ( λ n 1 , λ n , λ n ) + R G b ( λ n 1 , λ q , λ q ) ] ϕ ( R G b ( λ q 1 , λ n , λ n ) , R G b ( λ n 1 , λ n , λ n ) , R G b ( λ n 1 , λ q , λ q ) ) ψ 1 3 [ R G b ( λ q 1 , λ n , λ n ) + R G b ( λ n 1 , λ n , λ n ) + R G b ( λ n 1 , λ q , λ q ) ] ψ ( 1 3 [ e R G b ( λ q 1 , λ q , λ q ) + e R G b ( λ q , λ n 1 , λ n 1 ) + e R G b ( λ n 1 , λ n , λ n ) + R G b ( λ n 1 , λ n , λ n ) + R G b ( λ n 1 , λ q , λ q ) ] ) = ψ ( e 3 R G b ( λ q 1 , λ q , λ q ) + e + 1 3 R G b ( λ n 1 , λ n , λ n ) + e 3 R G b ( λ q , λ n 1 , λ n 1 ) + 1 3 R G b ( λ n 1 , λ q , λ q ) ) ψ ( e 3 R G b ( λ q , λ q , λ q 1 ) + e + 1 3 R G b ( λ n , λ n , λ n 1 ) + e 3 R G b ( λ n 1 , λ n 1 , λ q ) + 1 3 R G b ( λ q , λ q , λ n 1 ) ) ψ ( e 3 R G b ( λ q 1 , λ q , λ q + 1 ) + e + 1 3 R G b ( λ n 1 , λ n , λ n + 1 ) + e 2 3 [ R G b ( λ q , λ q + 1 , λ q + 1 ) + R G b ( λ q + 1 , λ n , λ n ) + R G b ( λ n , λ n 1 , λ n 1 ) ] + 1 3 R G b ( λ n 1 , λ q , λ q ) ) .
If we continue in the same way, we have
ψ ( e 3 R G b ( λ q 1 , λ q , λ q + 1 ) + e + 1 3 R G b ( λ n 1 , λ n , λ n + 1 ) + e 2 3 R G b ( λ q , λ q + 1 , λ q + 2 ) + e 2 3 R G b ( λ n 1 , λ n , λ n + 1 ) + e 3 3 R G b ( λ q + 1 , λ q + 2 , λ q + 3 ) + + + e n q 3 R G b ( λ n 2 , λ n 1 , λ n ) + 1 3 R G b ( λ n 1 , λ q , λ q ) ) .
Similarly, we can continue to apply ( R G b 3 ) and ( R G b 5 ) on R G b ( λ n 1 , λ q , λ q ) . Since ψ is an increasing function,
R G b ( λ q , λ n , λ n ) e 3 R G b ( λ q 1 , λ q , λ q + 1 ) + e + 1 3 R G b ( λ n 1 , λ n , λ n + 1 ) + e 2 3 [ R G b ( λ q , λ q + 1 , z λ q + 2 ) + e 2 3 R G b ( λ n 1 , λ n , λ n + 1 ) + e 3 3 R G b ( λ q + 1 , λ q + 2 , λ q + 3 ) + + + e n 3 R G b ( λ n 2 , λ n 1 , λ n ) + e 3 R G b ( λ q , λ q + 1 , λ q + 2 ) +
Taking the limit in (7), we have
lim q , n R G b ( λ q , λ n , λ n ) = 0 .
Then, { λ n } is an R G b -Cauchy sequence in E. From the fact that R G b is a complete metric space, there exists j E such that
lim n R G b ( λ n , λ n , j ) = 0 .
Below, we see that j is a fixed point of H. From (4), we get
ψ ( R G b ( λ n + 1 , λ n + 1 , H j ) ) = ψ ( R G b ( H λ n , H λ n , H j ) ) ψ ( 1 3 [ R G b ( λ n , H λ n , H λ n ) + R G b ( λ n , H j , H j ) + R G b ( j , H λ n , H λ n ) ] ) ϕ ( R G b ( λ n , H λ n , H λ n ) , R G b ( λ n , H j , H j ) , R G b ( j , H λ n , H λ n ) ) ψ ( 1 3 [ R G b ( λ n , λ n + 1 , λ n + 1 ) + R G b ( λ n , H j , H j ) + R G b ( j , λ n + 1 , λ n + 1 ) ] ) ϕ ( R G b ( λ n , λ n + 1 , λ n + 1 ) , R G b ( λ n , H j , H j ) , R G b ( j , λ n + 1 , λ n + 1 ) ψ ( 1 3 [ R G b ( λ n , λ n + 1 , λ n + 1 ) + R G b ( λ n , H j , H j ) + R G b ( j , λ n + 1 , λ n + 1 ) ] ) .
By the fact that ψ is an increasing function, we have
( R G b ( λ n + 1 , λ n + 1 , H j ) ) 1 3 [ R G b ( λ n , λ n + 1 , λ n + 1 ) + R G b ( λ n , H j , H j ) + R G b ( j , λ n + 1 , λ n + 1 ) ] .
Taking ( n ) , we get
R G b ( j , j , H j ) 1 3 R G b ( j , H j , H j ) max { R G b ( j , j , H j ) , R G b ( j , H j , H j ) } 1 3 max { R G b ( j , j , H j ) , R G b ( j , H j , H j ) } .
Therefore
max { R G b ( j , j , H j ) , R G b ( j , H j , H j ) } = 0 .
Then, R G b ( j , j , H j ) = R G b ( j , H j , H j ) = 0 so j = H j , which means that j is a fixed point of H. Finally, we show that j is a unique fixed point of H. So, let m be another fixed point of H, then
ψ ( R G b ( j , m , m ) ) = ψ ( R G b ( H j , H m , H m ) ) ψ 1 3 [ R G b ( j , H m , H m ) + R G b ( m , H m , H m ) + R G b ( m , H j , H j ) ] ϕ ( R G b ( j , H m , H m ) , R G b ( m , H m , H m ) , R G b ( m , H j , H j ) ) = ψ 1 3 [ R G b ( j , j , m ) + R G b ( m , j , j ) ] ϕ ( R G b ( j , m , m ) , 0 , R G b ( m , j , j ) ) ψ 1 3 [ R G b ( j , m , m ) + R G b ( m , j , j ) ] .
From the fact that ψ is an increasing function, we have
R G b ( j , m , m ) 1 3 [ R G b ( j , m , m ) + R G b ( m , j , j ) ] 2 3 max [ R G b ( j , m , m ) , R G b ( m , j , j ) ] .
Similarly, we obtain
ψ ( R G b ( m , j , j ) ) = ψ ( R G b ( H m , H j , H j ) ) ψ 1 3 [ R G b ( m , H j , H j ) + R G b ( j , H j , H j ) + R G b ( j , H m , H m ) ] ϕ ( R G b ( m , H j , H j ) , R G b ( j , H j , H j ) , R G b ( j , H m , H m ) ) = ψ 1 3 [ R G b ( m , j , j ) + R G b ( j , m , m ) ] ϕ ( R G b ( m , j , j ) , 0 , R G b ( j , m , m ) ) ψ 1 3 [ R G b ( m , j , j ) + R G b ( j , m , m ) ] .
By the fact that ψ is an increasing function, we get
R G b ( m , j , j ) 1 3 [ R G b ( m , j , j ) + R G b ( j , m , m ) ] 2 3 max [ R G b ( m , j , j ) , R G b ( j , m , m ) ]
and so
max { R G b ( m , j , j ) , R G b ( j , m , m ) } 2 3 max { R G b ( m , j , j ) , R G b ( j , m , m ) } .
Hence
max { R G b ( m , j , j ) , R G b ( j , m , m ) } = 0 ,
and consequently, R G b ( j , m , m ) = R G b ( m , j , j ) = 0 , that is, j = m , which means that j is a unique fixed point of H. □
Example 5.
Let E = [ 0 , 1 ] and R G b : E 3 [ 0 , ) be a ( R G B M S ) such that
R G b ( ν , ι , μ ) = ( | ν ι | + | ι μ | + | μ ν | ) 2
with the coefficient e = 3 where ν , ι , μ E . Let ψ : [ 0 , ) [ 0 , ) such that ψ ( ν ) = 3 ν is an altering distance function and ϕ : [ 0 , ) 3 [ 0 , ) is a continuous function with ϕ ( ν , ι , μ ) = 0 if ν = ι = μ such that
ϕ ( ν , ι , μ ) = ν + ι + μ 2 .
If we define H ( ν ) = 1 , we get ψ ( R G b ( H ν , H ι , H μ ) ) = 0 . It can be easily seen that H is a weakly G-contraction mapping. So, from Theorem 3, H has one fixed point as 1.

4. Some Applications on Fractional Integrals

4.1. Application to Riemann–Liouville Fractional Integrals

As an application of Theorem 2, we demonstrate that the Riemann–Liouville fractional integral has just one solution. The form of the Riemann–Liouville fractional integral is
I ϱ ς a R L = 1 Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ ; Γ ( ς ) > 0 ,
where ς R , Ω = { h : h is a continuous function, h : [ 0 , 1 ] R )} and ϱ , μ [ 0 , 1 ] . Using Example 1, we define R G b : Ω 3 [ 0 , ) by
R G b ( h , l , d ) = ( | h l | + | l h | + | h d | ) 2
with s = 3 for all h ( ϱ ) , l ( ϱ ) , d ( ϱ ) Ω and ϱ [ 0 , 1 ] , where R G b is a rectangular G b -metric. Now, if we accept the condition below, we can show that (8) has a unique solution.
1 Γ 2 ( ϱ + 1 ) . ( ϱ μ ) ς 1 ( ϱ a ) 2 ς | ( ϱ μ ) ς 1 | = k , where k < 1 45 and ϱ μ .
Firstly, let H : Ω Ω be an operator defined by
H h ( ϱ ) = 1 Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ .
Then, we obtain the following:
R G b ( H h ( ϱ ) , H h ( ϱ ) , H l ( ϱ ) ) = ( | H h ( ϱ ) H h ( ϱ ) | + | H h ( ϱ ) H l ( ϱ ) | + | H l ( ϱ ) H h ( ϱ ) | ) 2 = 4 ( | H h ( ϱ ) H l ( ϱ ) | ) 2 = 4 1 Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ 1 Γ ( ς ) a ϱ l ( μ ) ( ϱ μ ) ς 1 d μ 2 4 1 Γ ( ς ) a ϱ ( ϱ μ ) ς 1 d μ 2 | h ( μ ) l ( μ ) | 2 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 | h ( μ ) l ( μ ) | 2 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 ( | h ( μ ) H h ( ϱ ) | + | H h ( ϱ ) l ( μ ) | ) 2 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 ( | h ( μ ) H h ( ϱ ) | + | H h ( ϱ ) H l ( ϱ ) | + | H l ( ϱ ) l ( μ ) | ) 2 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 3 ( | h ( μ ) H h ( ϱ ) | 2 + | H h ( ϱ ) H l ( ϱ ) | 2 + | H h ( ϱ ) l ( μ ) | 2 ) 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 ( 3 | h ( ϱ ) H h ( ϱ ) | 2 + 3 | H h ( ϱ ) l ( μ ) | + | l ( μ ) H l ( ϱ ) | 2 + 3 | H l ( ϱ ) h ( μ ) | + | h ( ϱ ) l ( μ ) | 2 ) 4 Γ 2 ( ς ) ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 ( 3 | h ( μ ) H h ( ϱ ) | 2
+ 6 | H h ( ϱ ) l ( μ ) | 2 + 6 | l ( μ ) H l ( ϱ ) | 2 + 6 | H l ( ϱ ) h ( μ ) | 2 + 6 | h ( μ ) l ( μ ) | 2 ) = 1 Γ 2 ( ς ) ( ϱ μ ) ς 1 | ( ϱ μ ) ς 1 | ( a ϱ | ( ϱ μ ) ς 1 | d μ ) 2 . 4 ( 3 | h ( μ ) H h ( ϱ ) | 2 + 6 | H h ( ϱ ) l ( μ ) | 2 + 6 | l ( μ ) H l ( ϱ ) | 2 + 6 | H l ( ϱ ) h ( μ ) | 2 + 6 | h ( μ ) l ( μ ) | 2 ) = 1 Γ 2 ( ς ) ( ϱ μ ) ς 1 | ( ϱ μ ) ς 1 | ( ( ϱ μ ) ς ς | a ϱ ) 2 . 4 ( 3 | h ( μ ) H h ( ϱ ) | 2 + 6 | H h ( ϱ ) l ( μ ) | 2 + 6 | l ( μ ) H l ( ϱ ) | 2 + 6 | H l ( ϱ ) h ( μ ) | 2 + 6 | h ( μ ) l ( μ ) | 2 ) = 1 Γ ( ς + 1 ) ( ϱ μ ) ς 1 ( ϱ a ) 2 ς | ( ϱ μ ) ς 1 | . 4 ( 3 | h ( ϱ ) H h ( ϱ ) | 2 + 6 | H h ( ϱ ) l ( μ ) | 2 + 6 | l ( μ ) H l ( ϱ ) | 2 + 6 | H l ( ϱ ) h ( μ ) | 2 + 6 | h ( μ ) l ( μ ) | 2 ) = 6 k . 4 | h ( μ ) l ( μ ) | 2 + 3 k . 4 | h ( μ ) H h ( ϱ ) | 2 + 6 k . 4 | l ( μ ) H l ( ϱ ) | 2 + 6 k . 4 | H l ( ϱ ) h ( μ ) | 2 + 6 k . 4 | H h ( ϱ ) l ( μ ) | 2 = 6 k R G b ( h ( μ ) , h ( μ ) , l ( μ ) + 3 k R G b ( h ( μ ) , H h ( ϱ ) , H h ( ϱ ) + 6 k R G b ( l ( μ ) , H l ( ϱ ) , H l ( ϱ ) ) + 6 k R G b ( h ( μ ) , H l ( ϱ ) , H l ( ϱ ) ) + 6 k R G b ( l ( μ ) , H h ( ϱ ) , H h ( ϱ ) ) .
If we take 6 k = a 1 = a 4 = a 6 = a 7 and a 2 + a 3 + a 5 = 3 k , where i = 1 7 a i < 1 , we get
R G b ( H h ( ϱ ) , H h ( ϱ ) , H l ( ϱ ) ) a 1 R G b ( h ( μ ) , h ( μ ) , l ( μ ) + ( a 2 + a 3 + a 5 ) R G b ( h ( μ ) , H h ( ϱ ) , H h ( ϱ ) ) + a 4 R G b ( l ( μ ) , H l ( ϱ ) , H l ( ϱ ) ) + a 6 R G b ( h ( μ ) , H l ( ϱ ) , H l ( ϱ ) ) + a 7 R G b ( l ( μ ) , H h ( ϱ ) , H h ( ϱ ) ) .
Hence, it is easy to see that Theorem 2 is verified and so H has a unique fixed point which means that the Riemann–Liouville fractional integral Equation (9) has just one solution.

4.2. Application to Atangana–Baleanu Fractional Integrals

As an application to Corollary 2, we demonstrate that the Atangana and Baleanu fractional integral ([19,20,21,22]) has just one solution. The general form of the Atangana and Baleanu fractional integral is
I ϱ ς a A B h ( ϱ ) = 1 ς β ( ς ) h ( ϱ ) + ς β ( ς ) Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ ,
where ς R , Ω = { h : h is a continuous function, h : [ 0 , 1 ] R )} and ϱ , μ [ 0 , 1 ] . Using Example 1, we define R G b : Ω 3 [ 0 , ) by
R G b ( h , l , d ) = ( | h l | + | l d | + | d l | ) 2
with s = 3 for all h ( μ ) , l ( μ ) , d ( μ ) Ω and μ [ 0 , 1 ] , where R G b is a rectangular G b -metric.
If we accept the condition below, we can show that (10) has a unique solution.
γ = 3 1 ς β ( ς ) + a ς β ( ς ) Γ ( ς ) [ 0 , 1 7 ) .
Define an operator H : Ω Ω by
H h ( ϱ ) = 1 ς β ( ς ) h ( ϱ ) + ς β ( ς ) Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ .
Then, we have the following statements:
R G b ( H h ( ϱ ) , H h ( ϱ ) , H l ( ϱ ) ) = | H h ( ϱ ) H h ( ϱ ) | + | H h ( ϱ ) H l ( ϱ ) | + | H l ( ϱ ) H h ( ϱ ) | 2 = 4 | H h ( ϱ ) H l ( ϱ ) | 2 = 4 | ( 1 ς β ( ς ) h ( ϱ ) + ϱ β ( ς ) Γ ( ς ) a ϱ h ( μ ) ( ϱ μ ) ς 1 d μ ) ( 1 ς β ( ς ) l ( ϱ ) + ς β ( ς ) Γ ( ς ) a ϱ l ( μ ) ( ϱ μ ) ς 1 d μ ) | 2 = 4 | ( 1 ς β ( ς ) [ h ( ϱ ) l ( ϱ ) ] + ς β ( ς ) Γ ( ς ) a ϱ ( ϱ μ ) ς 1 d μ [ h ( μ ) l ( μ ) ] ) | 2 4 | ( 1 ς β ( ς ) | h ( ϱ ) l ( ϱ ) | + ς β ( ς ) Γ ( ς ) a ϱ ( ϱ μ ) ς 1 d μ | h ( μ ) l ( μ ) | ) | 2 = 4 | ( 1 ς β ( ς ) | h ( ϱ ) l ( ϱ ) | ς β ( ς ) Γ ( ς ) [ ( ϱ μ ) ς ς | a ϱ ] | h ( μ ) l ( μ ) | ) | 2 = 4 | ( 1 ς β ( ς ) | h ( ϱ ) l ( ϱ ) | ς β ( ς ) Γ ( ς ) . ( ϱ a ) ς ς | h ( μ ) l ( μ ) | ) | 2 4 | 1 ς β ( ς ) + ς β ( ς ) Γ ( ς ) . ( ϱ a ) ς ς | h ( ϱ ) l ( ϱ ) | | 2 4 ( 1 ς β ( ς ) + ς β ( ς ) Γ ( ς ) . ( ϱ a ) ς ς [ | h ( ϱ ) H h ( ϱ ) | + | H h ( ϱ ) l ( ϱ ) | + | h ( ϱ ) H l ( ϱ ) | ] ) 2 4 ( 1 ς β ( ς ) + ς β ( ς ) Γ ( ς ) . ( ϱ a ) ς ς ) 2 . 3 [ | h ( ϱ ) H h ( ϱ ) | 2
+ | H h ( ϱ ) l ( ϱ ) | 2 + | h ( ϱ ) H l ( ϱ ) | 2 ] 3 ( 1 ς β ( ς ) + a ς β ( ς ) Γ ( ς ) ) 2 [ R G b ( h ( ϱ ) , H h ( ϱ ) , H h ( ϱ ) ) + R G b ( h ( ϱ ) , H l ( ϱ ) , H l ( ϱ ) ) + R G b ( l ( ϱ ) , H h ( ϱ ) , H h ( ϱ ) ) ] = γ [ R G b ( h ( ϱ ) , H h ( ϱ ) , H h ( ϱ ) ) + R G b ( h ( ϱ ) , H l ( ϱ ) , H l ( ϱ ) ) + R G b ( l ( ϱ ) , H h ( ϱ ) , H h ( ϱ ) ) ] .
Since Corollary 2 is verified, we conclude that H has a unique fixed point and we can say the Atangana–Baleanu fractional integral Equation (12) has just one solution.

Author Contributions

Conceptualization, R.R. (Rende Ramadan) and O.E.; methodology, R.R. (Rende Ramadan) and O.E.; validation, R.R. (Rajagopalan Ramaswamy) and O.E.; formal analysis, O.E.; investigation, R.R. (Rende Ramadan) and O.E.; writing—original draft preparation, R.R. (Rende Ramadan), O.E. and R.R. (Rajagopalan Ramaswamy); writing—review and editing, O.E. and R.R. (Rajagopalan Ramaswamy); supervision, O.E.; project administration, O.E. and R.R. (Rajagopalan Ramaswamy); funding acquisition, O.E. and R.R. (Rajagopalan Ramaswamy). All authors have read and agreed to the published version of the manuscript.

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2025/R/1446).

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

We sincerely thank the editor and reviewers for taking the time to review our manuscript and providing constructive feedback to improve our manuscript.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Kannan, R. Some results on fixed points. Bull. Cal. Math. Soc. 1968, 60, 71–76. [Google Scholar]
  3. Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
  4. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
  5. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  6. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
  7. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  8. Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, 2009, 917175. [Google Scholar] [CrossRef]
  9. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef]
  10. Mustafa, Z.; Awawdeh, F.; Shatanawi, W. Fixed point theorem for expansive mappings in G-metric spaces. Int. J. Contemp. Math. Sci. 2010, 5, 2463–2472. [Google Scholar]
  11. Saleem, N.; Yildirim, I.; Gursac, N.; Hussain, A. Interpolative type contraction mappings in G-metric spaces. Int. J. Nonlinear Anal. Appl. 2024, 15, 453–464. [Google Scholar]
  12. Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat 2014, 28, 1087–1101. [Google Scholar] [CrossRef]
  13. Ege, O. Some fixed point theorems in complex valued Gb-metric spaces. J. Nonlinear Convex Anal. 2017, 18, 1997–2005. [Google Scholar]
  14. Ege, O.; Park, C.; Ansari, A.H. A different approach to complex valued Gb-metric spaces. Adv. Differ. Equ. 2011, 2020, 152. [Google Scholar] [CrossRef]
  15. Aydi, H.; Rakic, D.; Aghajani, A.; Dosenovic, T.; Salmi Md Noorani, M.; Qawaqneh, H. On fixed point results in Gb-metric spaces. Mathematics 2019, 7, 617. [Google Scholar] [CrossRef]
  16. Zhao, Y.; He, F.; Lu, S. Several fixed-point theorems for generalized Ciric-type contraction in Gb-metric spaces. AIMS Math. 2014, 9, 22393–22413. [Google Scholar] [CrossRef]
  17. Li, C.; Cui, Y. Rectangular Gb-metric spaces and some fixed point theorems. Axioms 2022, 11, 108. [Google Scholar] [CrossRef]
  18. George, R.; Radenovic, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
  19. Hammad, H.A.; Aydi, H.; Mlaiki, N. Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators. Adv. Differ. Equ. 2021, 2021, 97. [Google Scholar] [CrossRef]
  20. Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 2016, 89, 447–454. [Google Scholar] [CrossRef]
  21. Gomez-Aguilar, J.F.; Atangana, A.; Morales-Delgado, V.V.F. Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 2017, 45, 1514–1533. [Google Scholar] [CrossRef]
  22. Ekiz Yazici, N.; Ege, O.; Mlaiki, N.; Mukheimer, A. Controlled S-metric-type spaces and applications to fractional integrals. Symmetry 2023, 15, 1100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ramadan, R.; Ege, O.; Ramaswamy, R. Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal Fract. 2025, 9, 527. https://doi.org/10.3390/fractalfract9080527

AMA Style

Ramadan R, Ege O, Ramaswamy R. Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal and Fractional. 2025; 9(8):527. https://doi.org/10.3390/fractalfract9080527

Chicago/Turabian Style

Ramadan, Rende, Ozgur Ege, and Rajagopalan Ramaswamy. 2025. "Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations" Fractal and Fractional 9, no. 8: 527. https://doi.org/10.3390/fractalfract9080527

APA Style

Ramadan, R., Ege, O., & Ramaswamy, R. (2025). Novel Fixed Point Results in Rectangular Gb-Metric Spaces and Some Applications on Fractional Differential Equations. Fractal and Fractional, 9(8), 527. https://doi.org/10.3390/fractalfract9080527

Article Metrics

Back to TopTop