Developments in the Symmetry and Solutions to Fractional Differential Equations
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Dong, F.; Wang, Z.; Liu, H.; Cao, L. Existence and Stability in Nonlocal Schrödinger-Poisson-Slater Equations. Fractal Fract. 2025, 9, 329. https://doi.org/10.3390/fractalfract9060329.
- Zhang, K.; O’Regan, D.; Xu, J. Solvability of a Riemann-Liouville-Type Fractional-Impulsive Differential Equation with a Riemann-Stieltjes Integral Boundary Condition. Fractal Fract. 2025, 9, 323. https://doi.org/10.3390/fractalfract9050323.
- Wang, Y. A New Result Regarding Positive Solutions for Semipositone Boundary Value Problems of Fractional Differential Equations. Fractal Fract. 2025, 9, 110. https://doi.org/10.3390/fractalfract9020110.
- Wang, X.; Wang, Z.; Dang, S. Dynamic Behavior and Fixed-Time Synchronization Control of Incommensurate Fractional-Order Chaotic System. Fractal Fract. 2025, 9, 18. https://doi.org/10.3390/fractalfract9010018.
- Liu, T.; Xue, R.; Ding, B.; Juraev, D.A.; Saray, B.N.; Soleymani, F. A Novel and Effective Scheme for Solving the Fractional Telegraph Problem via the Spectral Element Method. Fractal Fract. 2024, 8, 711. https://doi.org/10.3390/fractalfract8120711.
- Cui, Y.; Liang, C.; Zou, Y. On Higher-Order Nonlinear Fractional Elastic Equations with Dependence on Lower Order Derivatives in Nonlinearity. Fractal Fract. 2024, 8, 398. https://doi.org/10.3390/fractalfract8070398.
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Study on a Nonlocal Fractional Coupled System Involving -Hilfer Derivatives and -Riemann-Liouville Integral Operators. Fractal Fract. 2024, 8, 211. https://doi.org/10.3390/fractalfract8040211.
- Liu, W.; Liu, L. Existence of solutions for the initial value problem with hadamard fractional derivatives in locally convex spaces. Fractal Fract. 2024, 8, 191. https://doi.org/10.3390/fractalfract8040191.
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Hassan, S.M.; Alsenaideh, N.R.; Radwan, A.E. A Novel Hybrid Crossover Dynamics of Monkeypox Disease Mathematical Model with Time Delay: Numerical Treatments. Fractal Fract. 2024, 8, 185. https://doi.org/10.3390/fractalfract8040185.
- Liu, M.; Zhang, L. Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations. Fractal Fract. 2024, 8, 173. https://doi.org/10.3390/fractalfract8030173.
- Ugboh, J.A.; Oboyi, J.; Udo, M.O.; Nabwey, H.A.; Ofem, A.E.; Narain, O.K. On a Faster Iterative Method for Solving Fractional Delay Differential Equations in Banach Spaces. Fractal Fract. 2024, 8, 166. https://doi.org/10.3390/fractalfract8030166.
- Torres-Hernandez, A.; Brambila-Paz, F.; Ramirez-Melendez, R. Proposal for Use of the Fractional Derivative of Radial Functions in Interpolation Problems. Fractal Fract. 2024, 8, 16. https://doi.org/10.3390/fractalfract8010016.
- Wang, J.; Yuan, S.; Liu, X. Finite Difference Scheme and Finite Volume Scheme for Fractional Laplacian Operator and Some Applications. Fractal Fract. 2023, 7, 868. https://doi.org/10.3390/fractalfract7120868.
- Guan, T.; Zhang, L. Maximum principle for variable-order fractional conformable differential equation with a generalized tempered fractional Laplace operator. Fractal Fract. 2023, 7, 798. https://doi.org/10.3390/fractalfract7110798.
References
- Abdou, M.A. An analytical method for spacešCtime fractional nonlinear differential equations arising in plasma physics. J. Ocean Eng. Sci. 2017, 2, 288–292. [Google Scholar] [CrossRef]
- Ghanbari, B.; Günerhan, H.; Srivastava, H.M. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model. Chaos Solitons Fractals 2020, 138, 109910. [Google Scholar] [CrossRef]
- Yadav, P.; Jahan, S.; Nisar, K.S. Solving fractional Bagley-Torvik equation by fractional order Fibonacci wavelet arising in fluid mechanics. Ain Shams Eng. J. 2024, 15, 102299. [Google Scholar] [CrossRef]
- He, N.; Wang, J.B.; Zhang, L.L.; Lu, K. An improved fractional-order differentiation model for image denoising. Signal Process. 2015, 112, 180–188. [Google Scholar] [CrossRef]
- Duran, S.; Durur, H.; Yavuz, M.; Yokus, A. Discussion of numerical and analytical techniques for the emerging fractional order murnaghan model in materials science. Opt. Quantum Electron. 2023, 55, 571. [Google Scholar] [CrossRef]
- del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.E. Nondiffusive transport in plasma turbulene: A fractional diffusion approach. Phys. Rev. Lett. 2005, 94, 065003. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Esposito, A.; Wu, J.S.H. Nonlocal approximation of nonlinear diffusion equations. Calc. Var. Partial Differ. Equ. 2024, 63, 100. [Google Scholar] [CrossRef]
- Chu, Y.M.; Rashid, S.; Alzahrani, T.; Alhulayyil, H.; Alsagri, H.; Rehman, S.U. Complex adaptive learning cortical neural network systems for solving time-fractional difference equations with bursting and mixed-mode oscillation behaviours. Sci. Rep. 2023, 13, 22447. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef]
- Wen, C.; Yang, J. Complexity evolution of chaotic financial systems based on fractional calculus. Chaos Solitons Fractals 2019, 128, 242–251. [Google Scholar] [CrossRef]
- Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef]
- Galewski, M.; Smejda, J. On variational methods for nonlinear difference equations. J. Comput. Appl. Math. 2010, 233, 2985–2993. [Google Scholar] [CrossRef]
- Zhai, C.; Hao, M. Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems. Nonlinear Anal. Theor. Methods Appl. 2012, 75, 2542–2551. [Google Scholar] [CrossRef]
- Jin, C.; Luo, J. Stability in functional differential equations established using fixed point theory. Nonlinear Anal. Theor. Methods Appl. 2008, 68, 3307–3315. [Google Scholar] [CrossRef]
- Jia, M.; Liu, X. Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 2014, 232, 313–323. [Google Scholar] [CrossRef]
- Ehme, J.; Eloe, P.W.; Henderson, J. Upper and lower solution methods for fully nonlinear boundary value problems. J. Differ. Equ. 2002, 180, 51–64. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Wei, W. Study in fractional differential equations by means of topological degree methods. Numer. Funct. Anal. Optim. 2012, 33, 216–238. [Google Scholar] [CrossRef]
- Shah, K.; Hussain, W. Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory. Numer. Func. Anal. Opt. 2019, 40, 1355–1372. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; An, Y. Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory. Math. Methods Appl. Sci. 2018, 41, 3197–3212. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, J. Multiplicity results for periodic solutions to delay differential equations via critical point theory. J. Differ. Equ. 2005, 218, 15–35. [Google Scholar] [CrossRef]
- Wang, G.; Qin, J.; Zhang, L.; Baleanu, D. Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions. Chaos Solitons Fractals 2020, 131, 109476. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 2008, 21, 828–834. [Google Scholar] [CrossRef]
- Chen, W.; Ma, L. Qualitative properties of solutions for dual fractional nonlinear parabolic equations. J. Funct. Anal. 2023, 285, 110117. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z. Symmetry of positive solutions for Choquard equations with fractional p-Laplacian. Nonlinear Anal. 2019, 182, 248–262. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, X. Hopf’s lemma and radial symmetry for the Logarithmic Laplacian problem. Fract. Calc. Appl. Anal. 2024, 27, 1906–1916. [Google Scholar] [CrossRef]
- Chen, W.; Wang, P.; Niu, Y.; Hu, Y. Asymptotic method of moving planes for fractional parabolic equations. Adv. Math. 2021, 377, 107463. [Google Scholar] [CrossRef]
- Wang, G.; Yang, R.; Zhang, L. The properties of a new fractional g-Laplacian Monge-Ampère operator and its applications. Adv. Nonlinear Anal. 2024, 13, 20240031. [Google Scholar] [CrossRef]
- Wang, P. Monotonicity and uniqueness of positive solutions to elliptic fractional p-equations. Fract. Calc. Appl. Anal. 2023, 26, 837–850. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, L.; Agarwal, R.P.; Wang, G. Radial symmetry for a generalized nonlinear fractional p-Laplacian problem. Nonlinear Anal. Model. Control 2021, 26, 349–362. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ahmad, B.; Al-Hutami, H.; Alsaedi, A. Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions. AIMS Math. 2023, 8, 19313–19333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Agarwal, R.P.; Ahmad, B.; Wang, G. Developments in the Symmetry and Solutions to Fractional Differential Equations. Fractal Fract. 2025, 9, 509. https://doi.org/10.3390/fractalfract9080509
Zhang L, Agarwal RP, Ahmad B, Wang G. Developments in the Symmetry and Solutions to Fractional Differential Equations. Fractal and Fractional. 2025; 9(8):509. https://doi.org/10.3390/fractalfract9080509
Chicago/Turabian StyleZhang, Lihong, Ravi P. Agarwal, Bashir Ahmad, and Guotao Wang. 2025. "Developments in the Symmetry and Solutions to Fractional Differential Equations" Fractal and Fractional 9, no. 8: 509. https://doi.org/10.3390/fractalfract9080509
APA StyleZhang, L., Agarwal, R. P., Ahmad, B., & Wang, G. (2025). Developments in the Symmetry and Solutions to Fractional Differential Equations. Fractal and Fractional, 9(8), 509. https://doi.org/10.3390/fractalfract9080509