Next Article in Journal
Development of Fractional Newton-Type Inequalities Through Extended Integral Operators
Previous Article in Journal
A Unified Framework for Fractional and Non-Fractional Operators in Some Function Spaces
Previous Article in Special Issue
Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains

1
Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia
2
Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
3
Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02814, Republic of Korea
4
Department of Computer Sciences, College of Sciences & Arts, Tanomah, King Khalid University, Abha 61421, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
6
Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
7
Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2025, 9(7), 442; https://doi.org/10.3390/fractalfract9070442
Submission received: 9 May 2025 / Revised: 18 June 2025 / Accepted: 30 June 2025 / Published: 3 July 2025

Abstract

This article concerns a novel coupled implicit differential system under φ –Riemann–Liouville ( RL ) fractional derivatives with p -Laplacian operator and multi-point strip boundary conditions on unbounded domains. An applicable Banach space is introduced to define solutions on unbounded domains [ c , ) . The explicit iterative solution’s existence and uniqueness ( E a U ) are established by employing the Banach fixed point strategy. The different types of Ulam–Hyers–Rassias ( UHR ) stabilities are investigated. Ultimately, we provide a numerical application of a coupled φ - RL fractional turbulent flow model to illustrate and test the effectiveness of our outcomes.

1. Introduction

The topic of fractional calculus has expanded from integer order to arbitrary order [1]. This has attracted the interest of many researchers [2,3]. Fractional differential equations ( F D E s ) have been used in numerous areas of science, such as physics, engineering, and finance, to represent complex models that exhibit memory effects and nonlocal behavior [4,5,6,7,8].
The p -Laplacian operator is an essential tool for modeling nonlinear phenomena in various fields, and its study has led to significant progress in both applied and theoretical mathematics [9]. It has numerous applications in engineering, physics, and mathematics due to its ability to describe real phenomena [10]. Furthermore, its study has presented several mathematical challenges due to its nonlinearity [11].
The nonlinearity acts challenges in the literature studies, such as authors in [12] explored bilinear Bäcklund transformations and various wave solutions, including N-soliton, breather, fission/fusion, and hybrid solutions, for a specific ( 3 + 1 ) -dimensional integrable wave equation relevant to fluid dynamics. Ref. [13] examined a complex ( 3 + 1 ) -dimensional shallow water wave equation that evolves, with applications that are relevant to oceans and rivers. Ref. [14] investigated the hetero-Bäcklund transformation, bilinear forms, and multisoliton solutions of a ( 2 + 1 ) dimensional, generalized, modified, dispersive water wave system. Many research works have investigated F D E s , involving the p -Laplacian operator [15]. For example, Hasanov [16] studied the global existence of solutions for the initial Caputo fractional Laplacian differential equations with singular points. Ref. [17] applied the existence theorem to the Φ -Caputo fractional Langevin differential system involving the p -Laplacian mapping. In addition, Derbazi et al. [18] established some qualitative results for the Caputo hybrid F D E s with a p -Laplacian mapping. Ref. [19] used the Avery–Peterson fixed point theorem to investigate the existence of positive solutions for the Caputo F D E s under some integral boundary conditions involving the p -Laplacian operator.
Unbounded solutions often arise in nonlinear ordinary, partial, and fractional differential equations ( F D E s ), as well as multi-order nonlinear problems with excitable behavior [20,21]. Their investigation is of great interest because it provides insights into the stability, limitations, and long-term behavior of dynamical systems [22]. Boutiara et al. [23] studied unbounded solutions of nonlinear fractional q- RL difference equations using classical fixed point theorems. Luca and Tudorache [21] investigated the existence of unbounded positive solutions for coupled nonlinear F D E s involving Hadamard derivatives by employing the Leggett–Williams and Guo–Krasnoselskii fixed point theorems. In 2024, Nyamoradi and Ahmad [24] explored iterative positive solutions for Hadamard F D E s with integral boundary conditions on the interval ( 1 , ) . The authors of [25] discussed the E a U of an unbounded solution for coupled F D E s . Furthermore, fixed point theorems have led to researchers studying integral equations and F D E s ; we refer readers to the works [26,27,28,29].
In this study, motivated by the aforementioned works, we investigate the qualitative properties of an explicit iterative solution, such as the existence, uniqueness, and stability of various forms of the UH type, for the following novel coupled φ - RL fractional Laplacian implicit differential system with multi-point strip boundary conditions on the unbounded domain [ c , ) :
D c + θ 1 , φ ψ p D c + ϑ 1 , φ U ( t ) = W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) , t T = [ c , ) , D c + θ 2 , φ ψ p D c + ϑ 2 , φ V ( t ) = W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) , t T = [ c , ) , U ( c ) = 0 , D c + ϑ 1 , φ U ( c ) = 0 , lim t φ 1 ( t ; c ) D c + ϑ 1 1 , φ U ( t ) = j = 1 n η j D c + 1 , φ U ( ϵ j ) , n N , ϵ j [ c , ) , V ( c ) = 0 , D c + ϑ 2 , φ V ( c ) = 0 , lim t φ 1 ( t ; c ) D c + ϑ 2 1 , φ V ( t ) = i = 1 m ζ i D c + 1 , φ V ( ε i ) , m N , ε i [ c , ) ,
where D c + x , φ is the φ -fractional RL derivatives of order x { θ 1 , θ 2 , ϑ 1 , ϑ 2 , γ 1 , γ 2 } , such that θ 1 , θ 2 ( 0 , 1 ] ,   ϑ 1 , ϑ 2 ( 1 , 2 ) , 1 < γ 1 , γ 2 < ϑ 1 , ϑ 2 < 2 ; and φ ( t ) C 2 ( T , R + ) be an increasing continuous positive function, with φ ( t ) 0 , t T . Furthermore, U , V C ( T , K ) , and W 1 , W 2 C ( T × K × K , K ) are continuous functions, and K is a real space; η j , ζ i K , c < ϵ 1 < ϵ 2 < < ϵ n < , c < ε 1 < ε 2 < < ε m < , such that ( ϑ 1 1 ) j = 1 n η j φ ϑ 1 2 ( ϵ j ; c ) 0 , and ( ϑ 2 1 ) i = 1 m ζ i φ ϑ 2 2 ( ε i ; c ) 0 , where we adopted the notation φ δ ( t ; c ) = φ ( t ) φ ( c ) δ . Moreover, the p -Laplacian operator ψ p ( U ) is given as ψ p ( U ) = | U | p 2 U , U 0 , ψ p ( 0 ) = 0 , with the inverse operator defined by ψ p 1 ( U ) = ψ q ( U ) = | U | q 2 U , such that 1 p + 1 q = 1 .
The main contributions of this work are as follows:
  • A new coupled φ - RL fractional implicit differential system is considered, with p -Laplacian operator and multi-point strip boundary conditions on unbounded domains.
  • An applicable Banach space is introduced to allow solutions to be defined on unbounded domains [ c , ) .
  • The E a U of explicit iterative solution for the proposed system (1) is investigated by employing the Banach fixed point strategy.
  • Some types of the UHR stabilities are established for the suggested coupled system (1).
  • The main results are applied to a coupled φ - RL fractional turbulent flow model.
  • The proposed problem is more generalized than those existing in the literature.
The remainder of this article is organized as follows: Section 2 introduces the fundamental concepts of fractional calculus. Section 3 explores the E a U outcome through explicit iterations solution and various forms of Ulam stability.

2. Preliminaries

In this section, we introduce several essential backgrounds for this research. Consider φ C n ( T , R + ) , which denotes a positive increasing function, and satisfies φ ( t ) 0 ,   for each t T . Now, for δ > 0 , the φ - RL fractional integral of order δ is given as follows [30]:
( I c + δ ; φ g ) ( t ) = 1 Γ ( δ ) c t φ ( v ) φ δ 1 ( t ; v ) g ( v ) d v , t > c .
Also, for δ ( n 1 , n ] , the φ - RL fractional derivative of order δ is given by the following [30]:
( D c + δ ; φ g ) ( t ) = 1 φ ( t ) d d t n ( I c + n δ ; φ g ) ( t ) , t > c ,
In addition, the following identities act as examples for the above fractional operators: I c + δ ; φ φ γ 1 ( t ; c ) = Γ ( γ ) Γ ( γ + δ ) φ γ + δ 1 ( t ; c ) , δ > 0 , and D c + δ ; φ φ γ 1 ( t ; c ) = Γ ( γ ) Γ ( γ δ ) φ γ δ 1 ( t ; c ) , n 1 < δ n , γ > 0 .
Moreover, the fundamental fractional calculus of φ - RL fractional derivative and integral are given as follows [31]:
I c + δ ; φ D c + δ ; φ g ( t ) = g ( t ) k = 1 n a k φ δ k ( t ; c ) , t T ,
for a k R ,   δ ( n 1 , n ] , and g n C ( T , R ) .
Theorem 1
([32]). Let ( O , B ) denote the generalized completed metric space, and Ξ be a contractive operator that maps O into itself with the Lipschitz constant z < 1 . If there is N , where B ( Ξ + 1 t , Ξ t ) < , for at least t O , then the following identities are fulfilled:
(i)
{ Ξ t } be a convergence sequence tending to a fixed point t 0 O ;
(ii)
Ξ owns one fixed point t 0 O * = { s O | B ( Ξ t , s ) < } ;
(iii)
If s O * , then B ( s , t 0 ) 1 1 z B ( Ξ s , s ) .
Lemma 1
([33]). Consider ψ p denotes the p -Laplacian function, so
(i)
If | U 1 | , | U 2 | ϱ > 0 and U 1 , U 2 > 0 , for every 1 < p 2 , then
| ψ p ( U 1 ) ψ p ( U 2 ) | ( p 1 ) ϱ p 2 | U 1 U 2 | .
(ii)
If | U 1 | , | U 2 | ρ , for every p > 2 , then
| ψ p ( U 1 ) ψ p ( U 2 ) | ( p 1 ) ρ p 2 | U 1 U 2 | .

3. Main Results

This section discusses the E a U of an unbounded explicit iterative solution and stability of Ulam–Hyers–Rassias ( UHR ). To obtain a suitable analysis, we need to define the following spaces:
Υ 1 = U | U ( t ) C ( T , K ) , D c + γ 1 , φ U ( t ) C 1 ( T , K ) , sup t T U ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) < , sup t T D c + γ 1 , φ U ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) < , Υ 2 = V | V ( t ) C ( T , K ) , D c + γ 2 , φ V ( t ) C 1 ( T , K ) , sup t T V ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) < , sup t T D c + γ 2 , φ V ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) < ,
which is endowed with the following norms:
U Υ 1 = sup t T U ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + sup t T D c + γ 1 , φ U ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) , V Υ 2 = sup t T V ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) + sup t T D c + γ 2 , φ V ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) .
Similar to Lemma 2.4, [25], we can prove that ( Υ 1 , · Υ 1 ) and ( Υ 2 , · Υ 2 ) are Banach spaces.
Next, we also define the space M = Υ 1 × Υ 2 = { ( U , V ) | U Υ 1 , V Υ 2 } gifted by the maximum norm ( U , V ) M = max { U Υ 1 , V Υ 2 } , ( U , V ) M , which is representing the Banach space as in the works [34,35,36].
Remark 1.
The proposed problem (1) can be reduced to the RL -fractional derivatives sense when φ ( t ) = t , and returns to the Hadamard fractional derivatives sense when φ ( t ) = ln ( t ) , and reduces to the Katugampola fractional derivatives sense for φ ( t ) = t ρ , ρ > 0 .
Now, we derive an integral equation that is analogous to the essential coupled φ - RL fractional Laplacian implicit differential system (1). Regarding this, we state the following hypothesis:
( AS 1 ) The following are satisfied:
c + φ ( v ) ψ q I c + θ 1 , φ W 1 v , V ( v ) , D c + γ 1 , φ V ( v ) d v < , c + φ ( v ) ψ q I c + θ 2 , φ W 2 v , U ( v ) , D c + γ 2 , φ U ( v ) d v < ,
and lim t φ ( t ) .
Lemma 2.
Assume that ϑ 1 , ϑ 2 ( 1 , 2 ) , a n d θ 1 , θ 2 ( 0 , 1 ] . If ( AS 1 ) holds. Then, the coupled φ- RL fractional Laplacian implicit differential system (1) possesses parallel integral equations given by the following:
U ( t ) = 1 Γ ( ϑ 1 ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v + Λ 1 φ ϑ 1 1 ( t ; c ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v ,
V ( t ) = 1 Γ ( ϑ 2 ) c t φ ( v ) φ ϑ 2 1 ( t ; v ) ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w d v + Λ 2 φ ϑ 2 1 ( t ; c ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w d v ,
where Λ 1 = 1 ( ϑ 1 1 ) j = 1 n η j φ ϑ 1 2 ( ϵ j ; c ) , Λ 2 = 1 ( ϑ 2 1 ) i = 1 m ζ i φ ϑ 2 2 ( ε i ; c ) .
Proof. 
We start our proof by performing I c + θ 1 ; φ , I c + θ 2 ; φ , on both sides of coupled system (1); using the identity (2), we obtain
ψ p D c + ϑ 1 , φ U ( t ) = I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) + a 0 φ θ 1 1 ( t ; c ) , ψ p D c + ϑ 2 , φ V ( t ) = I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) + b 0 φ θ 2 1 ( t ; c ) .
such that a 0 , b 0 R . Thus, by applying the conditions D c + ϑ 1 , φ U ( c ) = 0 , and D c + ϑ 2 , φ V ( c ) = 0 , one finds that a 0 = 0 , and b 0 = 0 .
Therefore,
D c + ϑ 1 , φ U ( t ) = ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) , D c + ϑ 2 , φ V ( t ) = ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) .
Next, again performing I c + ϑ 1 ; φ , I c + ϑ 2 ; φ , on both sides of coupled system (5), we obtain
U ( t ) = I c + ϑ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) + a 1 φ ϑ 1 1 ( t ; c ) + a 2 φ ϑ 1 2 ( t ; c ) , V ( t ) = I c + ϑ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) + b 1 φ ϑ 2 1 ( t ; c ) + b 2 φ ϑ 2 2 ( t ; c ) ,
where a 1 , a 2 , b 1 , b 2 R . Then, by applying the conditions U ( c ) = 0 , and V ( c ) = 0 , one has that a 2 = 0 , and b 2 = 0 . Therefore, we have
U ( t ) = I c + ϑ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) + a 1 φ ϑ 1 1 ( t ; c ) , V ( t ) = I c + ϑ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) + b 1 φ ϑ 2 1 ( t ; c ) .
Then,
D c + 1 , φ U ( t ) = I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) + a 1 ( ϑ 1 1 ) φ ϑ 1 2 ( t ; c ) , D c + 1 , φ V ( t ) = I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) + b 1 ( ϑ 2 1 ) φ ϑ 2 2 ( t ; c ) .
Also,
φ 1 ( t ; c ) D c + ϑ 1 1 , φ U ( t ) = φ 1 ( t ; c ) c t φ ( v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v + a 1 Γ ( ϑ 1 ) φ 1 ( t ; c ) , φ 1 ( t ; c ) D c + ϑ 2 1 , φ V ( t ) = φ 1 ( t ; c ) c t φ ( v ) ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , V ( w ) , D c + γ 2 , φ V ( w ) d w d v + b 1 Γ ( ϑ 2 ) φ 1 ( t ; c ) ,
and in view of ( AS 1 ) , it follows that
lim t φ 1 ( t ; c ) D c + ϑ 1 1 , φ U ( t ) = 0 , lim t φ 1 ( t ; c ) D c + ϑ 2 1 , φ V ( t ) = 0 .
In what follows, by applying the conditions lim t φ 1 ( t ; c ) D c + ϑ 1 1 , φ U ( t ) = j = 1 n η j D c + 1 , φ U ( ϵ j ) , and lim t φ 1 ( t ; c ) D c + ϑ 2 1 , φ V ( t ) = i = 1 m ζ i D c + 1 , φ V ( ε i ) , we obtain
0 = j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j ) + a 1 ( ϑ 1 1 ) j = 1 n η j φ ϑ 1 2 ( ϵ j ; c ) , 0 = i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i ) + b 1 ( ϑ 2 1 ) i = 1 m ζ i φ ϑ 2 2 ( ε i ; c ) ,
which implies that
a 1 = 1 ( ϑ 1 1 ) j = 1 n η j φ ϑ 1 2 ( ϵ j ; c ) j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j ) , b 1 = 1 ( ϑ 2 1 ) i = 1 m ζ i φ ϑ 2 2 ( ε i ; c ) i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i ) .
Hence, by substituting the values of a 1 , b 1 into system (6), the required result is proved.  □

3.1. Existences and Uniqueness Result

In this subsection, we study the E a U theorem to the coupled φ - RL fractional Laplacian implicit differential system (1).
Now, we introduce the following sufficient assumptions:
  • (AS2) Suppose there exist positive functions N 1 ( t ) , N 2 ( t ) , and continuous functions W 1 : T × Υ 1 × Υ 1 Υ 1 , and W 2 : T × Υ 2 × Υ 2 Υ 2 , where
    W 1 t , V 1 , V 2 W 1 t , V ˜ 1 , V ˜ 2 N 1 ( t ) V 1 V ˜ 1 + V 2 V ˜ 2 , W 2 t , U 1 , U 2 W 2 t , U ˜ 1 , U ˜ 2 N 2 ( t ) U 1 U ˜ 1 + U 2 U ˜ 2 .
  • (AS3) Suppose there exist positive functions f 1 ( t ) , f 2 ( t ) , and continuous functions W 1 : T × Υ 1 × Υ 1 Υ 1 , and W 2 : T × Υ 2 × Υ 2 Υ 2 , where
    W 1 t , V 1 , V 2 f 1 ( t ) , W 2 t , U 1 , U 2 f 2 ( t ) .
  • (AS4) Suppose there are constants A 1 , B 1 [ 0 , 1 ) , and A 2 , B 2 , A 3 , B 3 > 0 , where
    sup t T ( ( q 1 ) ( A 2 ) q 2 ( 1 + φ ϑ 1 ( t ; c ) ) I c + α 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | Γ ( ϑ 1 ) φ α 1 1 ( t ; c ) Γ ( α 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) ) A 1 < 1 , sup t T ( ( q 1 ) ( B 2 ) q 2 ( 1 + φ ϑ 2 ( t ; c ) ) I c + α 2 + θ 2 ; φ N 2 ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) + | Λ 2 | Γ ( ϑ 2 ) φ α 2 1 ( t ; c ) Γ ( α 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) ( q 1 ) ( B 2 ) q 2 i = 1 m ζ i I c + ϑ 2 + θ 2 1 ; φ N 2 ( ε i ) ( 1 + φ ϑ 2 ( ε i ; c ) ) ) B 1 < 1 , sup t T 1 Γ ( θ 1 ) c t φ ( v ) φ θ 1 1 ( t ; v ) f 1 ( v ) d v A 2 < , sup t T 1 Γ ( θ 2 ) c t φ ( v ) φ θ 2 1 ( t ; v ) f 2 ( v ) d v B 2 < , sup t T ( 1 Γ ( α 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ α 1 1 ( t ; v ) I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v + Γ ( ϑ 1 ) | Λ 1 | φ α 1 1 ( t ; c ) Γ ( α 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v ) A 3 < , sup t T ( 1 Γ ( α 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) c t φ ( v ) φ α 2 1 ( t ; v ) I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v + Γ ( ϑ 2 ) | Λ 2 | φ α 2 1 ( t ; c ) Γ ( α 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v ) B 3 < , where α 1 = ϑ 1 or ϑ 1 γ 1 , α 2 = ϑ 2 or ϑ 2 γ 2 , and
    I c θ i , φ N i ( v ) ( 1 + φ ϑ i ( v ; c ) ) < , W i * = sup t T W i ( t , 0 , 0 ) < , i = 1 , 2 .
Next, in the light of Lemma 2, we introduce the operator Y : M M as follows:
Y ( U , V ) ( t ) = ( Y 1 V ) ( t ) , ( Y 2 U ) ( t ) ,
where
( Y 1 V ) ( t ) = 1 Γ ( ϑ 1 ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v + Λ 1 φ ϑ 1 1 ( t ; c ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v ,
( Y 2 U ) ( t ) = 1 Γ ( ϑ 2 ) c t φ ( v ) φ ϑ 2 1 ( t ; v ) ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w d v + Λ 2 φ ϑ 2 1 ( t ; c ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w d v .
Theorem 2.
Consider the assumptions ( AS 1 ) , ( AS 3 ) and ( AS 4 ) hold, and q > 2 . Then, Y : M M .
Proof. 
According to the assumptions ( AS 2 ) and ( AS 4 ) , for each ( U , V ) M , and t T , one has
( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( V ( w ) + D c + γ 1 , φ V ( w ) ) + W 1 ( w , 0 , 0 ) d w d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( V ( w ) + D c + γ 1 , φ V ( w ) ) + W 1 ( w , 0 , 0 ) d w d v 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) × N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) + D c + γ 1 , φ V ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) + W 1 ( w , 0 , 0 ) d w d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) × N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) + D c + γ 1 , φ V ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) + W 1 ( w , 0 , 0 ) d w d v
1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V Υ 1 + W 1 * d w d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V Υ 1 + W 1 * d w d v 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) × ψ q I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * d v 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) × I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v A 3 < .
Furthermore,
D c + γ 1 , φ ( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w d v 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( V ( w ) + D c + γ 1 , φ V ( w ) ) + W 1 ( w , 0 , 0 ) d w d v + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( V ( w ) + D c + γ 1 , φ V ( w ) ) + W 1 ( w , 0 , 0 ) d w d v
1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V Υ 1 + W 1 * d w d v + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V Υ 1 + W 1 * d w d v 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) × ψ q I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * d v + Γ ( ϑ 1 ) | Λ 1 | φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * d v 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) × I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v + Γ ( ϑ 1 ) | Λ 1 | φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × I c θ 1 , φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) V Υ 1 + W 1 * q 1 d v A 3 < .
Hence,
Y 1 V Υ 1 = sup t T ( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + sup t T D c + γ 1 , φ ( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) < .
Similarly, we obtain that
( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) 1 Γ ( ϑ 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) c t φ ( v ) φ ϑ 2 1 ( t ; v ) × I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v + | Λ 2 | φ ϑ 2 1 ( t ; c ) ( 1 + φ ϑ 2 ( t ; c ) ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v B 3 < ,
and
D c + γ 2 , φ ( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) 1 Γ ( ϑ 2 γ 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) c t φ ( v ) φ ϑ 2 γ 2 1 ( t ; v ) × I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v + Γ ( ϑ 2 ) | Λ 2 | φ ϑ 2 γ 2 1 ( t ; c ) Γ ( ϑ 2 γ 2 ) ( 1 + φ ϑ 2 ( t ; c ) ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × I c θ 2 , φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) V Υ 2 + W 2 * q 1 d v B 3 < ,
which proves that
( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) + sup t T D c + γ 2 , φ ( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) < .
Therefore, we infer the following:
Y ( U , V ) M = ( Y 1 V , Y 2 U ) M = max { Y 1 V Υ 1 , Y 2 U Υ 2 } < ,
and Υ 1 , Υ 2 are continuous on T . Thus, Y : M M .  □
Theorem 3.
Consider the assumptions ( AS 1 ) ( AS 4 ) hold, and q > 2 . If 0 G = max { A 1 , B 1 } < 1 , then the coupled φ- RL fractional Laplacian implicit differential system (1) possesses exactly one solution on the infinite domain T × T . Additionally, there is an iterative monotone sequence ( { U n } n N , { V n } n N ) which converges uniformly to ( U ˜ , V ˜ ) on T × T , where
U n ( t ) = 1 Γ ( ϑ 1 ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V n 1 ( w ) , D c + γ 1 , φ V n 1 ( w ) d w d v + Λ 1 φ ϑ 1 1 ( t ; c ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) × ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V n 1 ( w ) , D c + γ 1 , φ V n 1 ( w ) d w d v ,
V n ( t ) = 1 Γ ( ϑ 2 ) c t φ ( v ) φ ϑ 2 1 ( t ; v ) ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U n 1 ( w ) , D c + γ 2 , φ U n 1 ( w ) d w d v + Λ 2 φ ϑ 2 1 ( t ; c ) i = 1 m ζ i 1 Γ ( ϑ 2 1 ) c ε i φ ( v ) φ ϑ 2 2 ( ε i ; v ) × ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U n 1 ( w ) , D c + γ 2 , φ U n 1 ( w ) d w d v .
Moreover, an estimate of the error for the approximation sequence is given as follows:
( U ˜ , V ˜ ) ( U n , V n ) M G n 1 G ( U 1 , V 1 ) ( U 0 , V 0 ) M , n N .
Proof. 
First, let us take the operator Y as defined in (8). Next, we aim to prove the mapping Y is contractive. Regarding this, by using ( AS 2 ) , for each ( U , V ) , ( U ¯ , V ¯ ) M , and w T , we have
W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) W 1 w , V ¯ ( w ) , D c + γ 1 , φ V ¯ ( w ) N 1 ( w ) V ( w ) V ¯ ( w ) + D c + γ 1 , φ V ( w ) D c + γ 1 , φ V ¯ ( w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V V ¯ Υ 1 .
Likewise, one has
W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) W 2 w , U ¯ ( w ) , D c + γ 2 , φ U ¯ ( w ) N 2 ( w ) ( 1 + φ ϑ 2 ( w ; c ) ) U U ¯ Υ 2 .
Additionally, in view of ( AS 3 ) and ( AS 4 ) , we establish the boundedness of I c + θ 1 , φ W 1 v , V ( v ) , D c + γ 1 , φ V ( v ) , and I c + θ 2 , φ W 2 v , U ( v ) , D c + γ 2 , φ U ( v ) as below:
1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) f 1 ( w ) d w A 2 < ,
and similarly, we find
1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) f 2 ( w ) d w B 2 < .
Next, for simplicity analysis, we take
( Y 10 V ) ( v ) = ψ q 1 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) W 1 w , V ( w ) , D c + γ 1 , φ V ( w ) d w , ( Y 20 U ) ( v ) = ψ q 1 Γ ( θ 2 ) c v φ ( w ) φ θ 2 1 ( v ; w ) W 2 w , U ( w ) , D c + γ 2 , φ U ( w ) d w ,
So, by utilizing inequalities (13) and (15), one has
( Y 10 V ) ( v ) ( Y 10 V ¯ ) ( v ) ( q 1 ) ( A 2 ) q 2 Γ ( θ 1 ) c v φ ( w ) φ θ 1 1 ( v ; w ) N 1 ( w ) ( 1 + φ ϑ 1 ( w ; c ) ) V V ¯ Υ 1 d w ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 I c + θ 1 ; φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) ,
and according to inequalities (14) and (16), one finds
( Y 20 U ) ( v ) ( Y 20 U ¯ ) ( v ) ( q 1 ) ( B 2 ) q 2 U U ¯ Υ 2 I c + θ 2 ; φ N 2 ( v ) ( 1 + φ ϑ 2 ( v ; c ) ) .
Then, due to inequality (17), and ( AS 2 ) , we obtain
( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) ( Y 1 V ¯ ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) ( Y 10 V ) ( v ) ( Y 10 V ¯ ) ( v ) d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) ( Y 10 V ) ( v ) ( Y 10 V ¯ ) ( v ) d v ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 Γ ( ϑ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 1 ( t ; v ) I c + θ 1 ; φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) d v + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 Γ ( ϑ 1 1 ) × c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) I c + θ 1 ; φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) d v ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 ( 1 + φ ϑ 1 ( t ; c ) ) I c + ϑ 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) [ ( q 1 ) ( A 2 ) q 2 ( 1 + φ ϑ 1 ( t ; c ) ) I c + ϑ 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) ] V V ¯ Υ 1 A 1 V V ¯ Υ 1 .
Also,
( D c + γ 1 , φ Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) ( D c + γ 1 , φ Y 1 V ¯ ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) ( Y 10 V ) ( v ) ( Y 10 V ¯ ) ( v ) d v + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j 1 Γ ( ϑ 1 1 ) c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) ( Y 10 V ) ( v ) ( Y 10 V ¯ ) ( v ) d v ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) c t φ ( v ) φ ϑ 1 γ 1 1 ( t ; v ) I c + θ 1 ; φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) d v + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) j = 1 n η j ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 Γ ( ϑ 1 1 ) × c ϵ j φ ( v ) φ ϑ 1 2 ( ϵ j ; v ) I c + θ 1 ; φ N 1 ( v ) ( 1 + φ ϑ 1 ( v ; c ) ) d v ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 ( 1 + φ ϑ 1 ( t ; c ) ) I c + ϑ 1 γ 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 V V ¯ Υ 1 j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) A 1 V V ¯ Υ 1 .
Hence, we infer that
Y 1 V Y 1 V ¯ Υ 1 A 1 V V ¯ Υ 1 .
Likewise, using inequality (18) and ( AS 2 ) , we can also deduce that
( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) ( Y 2 U ¯ ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 U U ¯ Υ 2 , ( D c + γ 2 , φ Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) ( D c + γ 2 , φ Y 2 U ¯ ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 U U ¯ Υ 2 ,
which implies that
Y 2 U Y 2 U ¯ Υ 2 B 1 U U ¯ Υ 2 .
Hence, using inequalities (19) and (20), we find
Y ( U , V ) Y ( U ¯ , V ¯ ) M = ( Y 1 V , Y 2 U ) ( Y 1 V ¯ , Y 2 U ¯ ) M = Y 1 V Y 1 V ¯ , Y 2 U Y 2 U ¯ M = max { Y 1 V Y 1 V ¯ Υ 1 , Y 2 U Y 2 U ¯ Υ 2 } max { A 1 V V ¯ Υ 1 , B 1 U U ¯ Υ 2 } = max { B 1 U U ¯ Υ 2 , A 1 V V ¯ Υ 1 } G ( U , V ) ( U ¯ , V ¯ ) M ,
where G = max { A 1 , B 1 } , and since G [ 0 , 1 ) , then the operator Y bis contractive. Hence, in view of the Banach fixed point result, we infer that Y has only one fixed point ( U ˜ , V ˜ ) in M and acts a solution of the coupled φ - RL fractional Laplacian implicit differential system (1) on an infinite domain T × T .
Moreover, for any ( U 0 , V 0 ) M , ( U n , V n ) ( U ˜ , V ˜ ) M 0 , as n , where ( U n , V n ) = Y ( U n 1 , V n 1 ) , n N . Furthermore, in view of (21), we obtain
( U n , V n ) ( U n 1 , V n 1 ) M G n 1 ( U 1 , V 1 ) ( U 0 , V 0 ) M , n N .
Then, for any k, and k > n , one finds
( U k , V k ) ( U n , V n ) M ( U k , V k ) ( U k 1 , V k 1 ) M + ( U k 1 , V k 1 ) ( U k 2 , V k 2 ) M + + ( U n + 1 , V n + 1 ) ( U n , V n ) M G k 1 + G k 2 + + G k ( U 1 , V 1 ) ( U 0 , V 0 ) M G n ( U 1 , V 1 ) ( U 0 , V 0 ) M r = 0 k n 1 G r .
This shows that, for k ,
( U ˜ , V ˜ ) ( U n , V n ) M G n 1 G ( U 1 , V 1 ) ( U 0 , V 0 ) M , n N .
Hence, the proof is completed.  □

3.2. Stability Results

In this section, we are devoting our attention to investigating the stabilities of UHR , and semi- UHR types. For more detail, we refer readers to [37]. We present the beneficial metrics d 1 ( · , · ) and d 2 ( · , · ) on the Banach space M . Furthermore, for non-decreasing continuous mapping β ( t ) > 0 , the metric d 1 ( · , · ) is defined by the following:
d 1 ( ( U , V ) , ( U ¯ , V ¯ ) ) = inf H [ c , ) | U ( t ) U ¯ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) H β ( t ) , D c + γ 1 , φ U ( t ) D c + γ 1 , φ U ¯ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) H β ( t ) , V ( t ) V ¯ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) H β ( t ) , D c + γ 2 , φ V ( t ) D c + γ 2 , φ V ¯ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) H β ( t ) , t T .
Also, for non-increasing continuous mapping β ( t ) > 0 , the metric d 2 ( · , · ) is defined by:
d 2 ( ( U , V ) , ( U ¯ , V ¯ ) ) = sup H [ c , ) | U ( t ) U ¯ ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) H , D c + γ 1 , φ U ( t ) D c + γ 1 , φ U ¯ ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) H , V ( t ) V ¯ ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) H , D c + γ 2 , φ V ( t ) D c + γ 2 , φ V ¯ ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) H , t T .
Note that d 1 ( · , · ) and d 2 ( · , · ) are metrics on Banach space M [38].
In what follows, we investigate the stabilities of the UHR type.
Theorem 4.
Assume that all assumptions of Theorem 3 are verified. Also, let β ( t ) denote a continuous non-decreasing non-negative function on T , verifying that
U ( t ) I c + ϑ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) Λ 1 φ ϑ 1 1 ( t ; c ) j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j )   I c + ϑ 1 , φ ψ q I c + θ 1 , φ β ( t ) , D c + γ 1 , φ U ( t ) I c + ϑ 1 γ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) Γ ( ϑ 1 ) Λ 1 φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j )   I c + ϑ 1 γ 1 , φ ψ q I c + θ 1 , φ β ( t ) ,
and
V ( t ) I c + ϑ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) Λ 2 φ ϑ 2 1 ( t ; c ) i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i )   I c + ϑ 2 , φ ψ q I c + θ 2 , φ β ( t ) , D c + γ 2 , φ V ( t ) I c + ϑ 2 γ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) Γ ( ϑ 2 ) Λ 2 φ ϑ 2 γ 2 1 ( t ; c ) Γ ( ϑ 2 γ 2 ) i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i )   I c + ϑ 2 γ 2 , φ ψ q I c + θ 2 , φ β ( t ) ,
then there is a solution ( U ˜ , V ˜ ) M , satisfying
U ( t ) U ˜ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) R 1 1 A 1 β ( t ) , t T , 0 A 1 < 1 , D c + γ 1 , φ U ( t ) D c + γ 1 , φ U ˜ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) R 1 1 A 1 β ( t ) , t T , 0 A 1 < 1 , V ( t ) V ˜ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) R 2 1 B 1 β ( t ) , t T , 0 B 1 < 1 , D c + γ 2 , φ V ( t ) D c + γ 2 , φ V ˜ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) R 2 1 B 1 β ( t ) , t T , 0 B 1 < 1 ,
which suggests that the coupled φ- RL fractional Laplacian implicit differential system (1) allows for a stable UHR type, and, as a consequence UH is stable. Given that
sup t T 1 ( 1 + φ ϑ 1 ( t ; c ) ) β ( t ) Γ ( θ 1 + 1 ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + α 1 + 1 ) φ θ 1 ( q 1 ) + α 1 ( t ; c ) R 1 < , sup t T 1 ( 1 + φ ϑ 2 ( t ; c ) ) β ( t ) Γ ( θ 2 + 1 ) q 1 Γ ( θ 2 ( q 1 ) + 1 ) Γ ( θ 2 ( q 1 ) + α 2 + 1 ) φ θ 2 ( q 1 ) + α 2 ( t ; c ) R 2 < ,
where α 1 = ϑ 1 or ϑ 1 γ 1 , α 2 = ϑ 2 or ϑ 2 γ 2 , and R = min { R 1 , R 2 } .
Proof. 
We recall the contractive operator Y : M M defined in (8). In view of metric d 1 ( · , · ) , and the assumptions ( AS 1 ) ( AS 4 ) , for any ( U , V ) , ( U ¯ , V ¯ ) Υ 1 × Υ 2 , one finds
( Y 1 V ) ( t ) ( Y 1 V ¯ ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 H β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) I c + ϑ 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | φ ϑ 1 1 ( t ; c ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 H β ( t ) j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) A 1 H β ( t ) , t T , 0 A 1 < 1 .
Also
( D c + γ 1 , φ Y 1 V ) ( t ) ( D c + γ 1 , φ Y 1 V ¯ ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 H β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) I c + ϑ 1 γ 1 + θ 1 ; φ N 1 ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) + | Λ 1 | Γ ( ϑ 1 ) φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) ( 1 + φ ϑ 1 ( t ; c ) ) ( q 1 ) ( A 2 ) q 2 H β ( t ) j = 1 n η j I c + ϑ 1 + θ 1 1 ; φ N 1 ( ϵ j ) ( 1 + φ ϑ 1 ( ϵ j ; c ) ) A 1 H β ( t ) , t T , 0 A 1 < 1 .
In the same manner, one has
( Y 2 U ) ( t ) ( Y 2 U ¯ ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 H β ( t ) , t T , 0 B 1 < 1 , ( D c + γ 2 , φ Y 2 U ) ( t ) ( D c + γ 2 , φ Y 2 U ¯ ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 H β ( t ) , t T , 0 B 1 < 1 .
Then, we obtain
d 1 ( Y ( U , V ) , Y ( U ¯ , V ¯ ) ) G H = G d 1 ( ( U , V ) , ( U ¯ , V ¯ ) ) , 0 G < 1 .
Now, using inequalities (22)–(23), we obtain
( U ) ( t ) ( Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) sup t T 1 ( 1 + φ ϑ 1 ( t ; c ) ) β ( t ) Γ ( θ 1 + 1 ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + ϑ 1 + 1 ) φ θ 1 ( q 1 ) + ϑ 1 ( t ; c ) R 1 β ( t ) , t T ,
and
( D c + γ 1 , φ U ) ( t ) ( D c + γ 1 , φ Y 1 V ) ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) sup t T 1 ( 1 + φ ϑ 1 ( t ; c ) ) β ( t ) Γ ( θ 1 + 1 ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + ϑ 1 γ 1 + 1 ) φ θ 1 ( q 1 ) + ϑ 1 γ 1 ( t ; c ) R 1 β ( t ) , t T ,
Analogously, we also obtain
( V ) ( t ) ( Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) R 2 β ( t ) , t T ,
( D c + γ 1 , φ V ) ( t ) ( D c + γ 2 , φ Y 2 U ) ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) R 2 β ( t ) , t T .
Then, the above inequalities imply that
d 1 ( ( U , V ) , Y ( U , V ) ) R < .
Thus, by employing Theorem 1, the mapping Y admits a fixed point ( U ˜ , V ˜ ) , and it follows that
d 1 ( ( U , V ) , ( U ˜ , V ˜ ) ) 1 1 G d 1 ( Y ( U , V ) , ( U , V ) ) R 1 G , 0 G < 1 .
Hence, we infer that the coupled φ - RL fractional Laplacian implicit differential system (1) is UHR stable. Additionally, when β ( t ) = 1 , the coupled φ - RL fractional Laplacian implicit differential system (1) is called, UH stable.  □
Theorem 5.
Assume that all assumptions of Theorem 3 are fulfilled. Also, let β ( t ) denote a continuous non-increasing non-negative function on T , and for μ > 0 verifying
U ( t ) I c + ϑ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) Λ 1 φ ϑ 1 1 ( t ; c ) j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j )   I c + ϑ 1 , φ ψ q I c + θ 1 , φ μ , D c + γ 1 , φ U ( t ) I c + ϑ 1 γ 1 , φ ψ q I c + θ 1 , φ W 1 t , V ( t ) , D c + γ 1 , φ V ( t ) Γ ( ϑ 1 ) Λ 1 φ ϑ 1 γ 1 1 ( t ; c ) Γ ( ϑ 1 γ 1 ) j = 1 n η j I c + ϑ 1 1 , φ ψ q I c + θ 1 , φ W 1 ϵ j , V ( ϵ j ) , D c + γ 1 , φ V ( ϵ j )   I c + ϑ 1 γ 1 , φ ψ q I c + θ 1 , φ μ ,
and
V ( t ) I c + ϑ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) Λ 2 φ ϑ 2 1 ( t ; c ) i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i )   I c + ϑ 2 , φ ψ q I c + θ 2 , φ μ , D c + γ 2 , φ V ( t ) I c + ϑ 2 γ 2 , φ ψ q I c + θ 2 , φ W 2 t , U ( t ) , D c + γ 2 , φ U ( t ) Γ ( ϑ 2 ) Λ 2 φ ϑ 2 γ 2 1 ( t ; c ) Γ ( ϑ 2 γ 2 ) i = 1 m ζ i I c + ϑ 2 1 , φ ψ q I c + θ 2 , φ W 2 ε i , U ( ε i ) , D c + γ 2 , φ U ( ε i )   I c + ϑ 2 γ 2 , φ ψ q I c + θ 2 , φ μ ,
Then, one has a real number ϱ > 0 , and a solution ( U ˜ , V ˜ ) M , satisfying
U ( t ) U ˜ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) μ F 1 ϱ 1 A 1 β ( t ) , t T , 0 A 1 < 1 , D c + γ 1 , φ U ( t ) D c + γ 1 , φ U ˜ ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) μ F 1 ϱ 1 A 1 β ( t ) , t T , 0 A 1 < 1 , V ( t ) V ˜ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) μ F 2 ϱ 1 B 1 β ( t ) , t T , 0 B 1 < 1 , D c + γ 2 , φ V ( t ) D c + γ 2 , φ V ˜ ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) μ F 2 ϱ 1 B 1 β ( t ) , t T , 0 B 1 < 1 ,
which suggests that the coupled φ- RL fractional Laplacian implicit differential system (1) allows for a stable semi- UHR type.
sup t T 1 ( 1 + φ ϑ 1 ( t ; c ) ) μ q 2 ( Γ ( θ 1 + 1 ) ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + α 1 + 1 ) φ θ 1 ( q 1 ) + α 1 ( t ; c ) F 1 < , sup t T 1 ( 1 + φ ϑ 2 ( t ; c ) ) μ q 2 ( Γ ( θ 2 + 1 ) ) q 1 Γ ( θ 2 ( q 1 ) + 1 ) Γ ( θ 2 ( q 1 ) + α 2 + 1 ) φ θ 2 ( q 1 ) + α 2 ( t ; c ) F 2 < ,
where α 1 = ϑ 1 or ϑ 1 γ 1 , α 2 = ϑ 2 or ϑ 2 γ 2 , and F = min { F 1 , F 2 } .
Proof. 
The producers in Theorem 4 are similar. We define a contractive operator Y : M M as given in (8). In view of metric d 2 ( · , · ) , and the assumptions ( AS 1 ) ( AS 4 ) , we find
( Y 1 V ) ( t ) ( Y 1 V ¯ ) ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) A 1 H , t T , 0 A 1 < 1 , ( D c + γ 1 , φ Y 1 V ) ( t ) ( D c + γ 1 , φ Y 1 V ¯ ) ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) A 1 H , t T , 0 A 1 < 1 .
Also,
( Y 2 U ) ( t ) ( Y 2 U ¯ ) ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 H , t T , 0 B 1 < 1 , ( D c + γ 2 , φ Y 2 U ) ( t ) ( D c + γ 2 , φ Y 2 U ¯ ) ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) B 1 H , t T , 0 B 1 < 1 .
Therefore, we deduce that
d 2 ( Y ( U , V ) , Y ( U ¯ , V ¯ ) ) G H = G d 2 ( ( U , V ) , ( U ¯ , V ¯ ) ) , 0 G < 1 .
Next, based on the positiveness and continuity of a non-increasing function β ( t ) , we obtain
1 β ( t ) ϱ , t T , 0 < ϱ .
Moreover, through inequalities (28) and (29), one has
( U ) ( t ) ( Y 1 V ) ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) sup t T 1 β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) μ Γ ( θ 1 + 1 ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + ϑ 1 + 1 ) φ θ 1 ( q 1 ) + ϑ 1 ( t ; c ) F 1 ϱ μ , t T ,
( D c + γ 1 , φ U ) ( t ) ( D c + γ 1 , φ Y 1 V ) ( t ) β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) sup t T 1 β ( t ) ( 1 + φ ϑ 1 ( t ; c ) ) μ Γ ( θ 1 + 1 ) q 1 Γ ( θ 1 ( q 1 ) + 1 ) Γ ( θ 1 ( q 1 ) + ϑ 1 γ 1 + 1 ) φ θ 1 ( q 1 ) + ϑ 1 γ 1 ( t ; c ) F 1 ϱ μ , t T ,
Through analogue, we also have
( V ) ( t ) ( Y 2 U ) ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) F 2 ϱ μ , t T ,
( D c + γ 1 , φ V ) ( t ) ( D c + γ 2 , φ Y 2 U ) ( t ) β ( t ) ( 1 + φ ϑ 2 ( t ; c ) ) F 2 ϱ μ , t T ,
that yield
d 2 ( ( U , V ) , Y ( U , V ) ) F ϱ μ < .
Hence, according on Theorem 1, the mapping Y admits a fixed point ( U ˜ , V ˜ ) , and one infers that
d 2 ( ( U , V ) , ( U ˜ , V ˜ ) ) 1 1 G d 2 ( Y ( U , V ) , ( U , V ) ) F ϱ μ 1 G , 0 G < 1 .
Therefore, we deduce that the coupled φ - RL fractional Laplacian implicit differential system (1) is semi- UHR -stable.  □

4. Application to the Turbulent Flow System

Herein, we present a numerical application to test the strength of our results. Let us consider the following coupled φ - RL fractional turbulent flow model:
D 0 + 12 , φ ψ 97 D 0 + 32 , φ U ( t ) = W 1 t , V ( t ) , D 0 + 43 , φ V ( t ) , t T = [ 0 , ) , D 0 + 14 , φ ψ 97 D 0 + 54 , φ V ( t ) = W 2 t , U ( t ) , D 0 + 76 , φ U ( t ) , t T = [ 0 , ) , U ( 0 ) = 0 , D 0 + 32 , φ U ( 0 ) = 0 , lim t φ 1 ( t ; 0 ) D 0 + 1 , φ U ( t ) = 0.2 D 0 + 1 , φ U ( 0.01 ) , V ( 0 ) = 0 , D 0 + 54 , φ V ( 0 ) = 0 , lim t φ 1 ( t ; 0 ) D 0 + 1 , φ V ( t ) = 0.3 D 0 + 1 , φ V ( 0.02 ) ,
Here, θ 1 = 12 ,   θ 2 = 14 ,   ϑ 1 = 32 ,   ϑ 2 = 54 ,   γ 1 = 43 ,   γ 2 = 76 ,   p = 97 ,   q = 92 ,   η 1 = 0.2 ,   ζ 1 = 0.3 , m = n = 1 ,   ϵ 1 = 0.01 ,   ε 1 = 0.02 , and the appropriate Banach spaces are given by the following:
Υ 1 = U | U ( t ) C ( T , R ) , D 0 + 43 , φ U ( t ) C 1 ( T , R ) , sup t T U ( t ) ( 1 + φ 32 ( t ; c ) ) < , sup t T D 0 + 43 , φ U ( t ) ( 1 + φ 32 ( t ; c ) ) < ,
Υ 2 = V | V ( t ) C ( T , R ) , D 0 + 76 , φ V ( t ) C 1 ( T , R ) , sup t T V ( t ) ( 1 + φ 54 ( t ; c ) ) < , sup t T D 0 + 76 , φ V ( t ) ( 1 + φ 54 ( t ; c ) ) < ,
Now, let us choose φ ( t ) = t ; we obtain
W 1 t , V ( t ) , D 0 + 43 , t V ( t ) = 1 ( 1 + t 32 ) 1 9 e t + 1 15 + t sin ( V ( t ) ) + 1 9 + t D 0 + 43 , t V ( t ) ( 1 + D 0 + 43 , t V ( t ) ) , W 2 t , U ( t ) , D 0 + 76 , t U ( t ) = 1 ( 1 + t 54 ) 1 5 e 2 t + 1 20 + t 2 cos ( U ( t ) ) + 1 16 + t 2 D 0 + 76 , t U ( t ) ( 1 + D 0 + 76 , t U ( t ) ) .
Then, one can see that
| W 1 t , V 1 , V 2 | 1 ( 1 + t 32 ) 1 9 e t + 1 15 + t + 1 9 + t , | W 2 t , U 1 , U 2 | 1 ( 1 + t 54 ) 1 5 e 2 t + 1 20 + t 2 + 1 16 + t 2 ,
yielding f 1 ( t ) = 1 ( 1 + t 32 ) 1 9 e t + 1 15 + t + 1 9 + t , f 2 ( t ) = 1 ( 1 + t 54 ) 1 5 e 2 t + 1 20 + t 2 + 1 16 + t 2 .
We also obtain
| W 1 t , V 1 , V 2 W 1 t , V ˜ 1 , V ˜ 2 | 1 ( 1 + t 32 ) 1 9 + t | V 1 V ˜ 1 | + | V 2 V ˜ 2 | , | W 2 t , U 1 , U 2 W 2 t , U ˜ 1 , U ˜ 2 | 1 ( 1 + t 54 ) 1 16 + t 2 | U 1 U ˜ 1 | + | U 2 U ˜ 2 | .
N 1 ( t ) = 1 ( 1 + t 32 ) 1 9 + t , N 2 ( t ) = 1 ( 1 + t 54 ) 1 16 + t 2 , W 1 * = 19 , and W 2 * = 15 . Therefore, we can infer that
| Λ 1 | = 1 , A 1 0.0377694 < 1 , A 2 0.276993 < , A 3 1.72682 × 10 106 < , | Λ 2 | = 0.709106 , B 1 0.000171751 < 1 , B 2 0.0553989 < , B 3 1.7349 × 10 59 < , and G = max { A 1 , B 1 } < 1 .
Hence, all conditions of Theorem 3 hold. Then, the coupled φ - RL fractional Laplacian implicit differential system (34) possesses a unique solution ( U ˜ , V ˜ ) on unbounded domain [ 0 , ) × [ 0 , ) . Additionally, it has an explicit iterated unbounded solution, represented as follows:
U n ( t ) , V n ( t ) = ( 1 Γ ( 32 ) 0 t φ ( v ) φ 32 1 ( t ; v ) ψ 3 1 Γ ( 12 ) 0 v φ ( w ) φ 12 1 ( v ; w ) W 1 w , V n 1 ( w ) , D 0 + 43 , t V n 1 ( w ) d w d v + Λ 1 φ 32 1 ( t ; c ) 0.2 Γ ( 32 1 ) 0 0.01 φ ( v ) φ 32 2 ( 0.01 ; v ) × ψ 3 1 Γ ( 12 ) 0 v φ ( w ) φ 12 1 ( v ; w ) W 1 w , V n 1 ( w ) , D 0 + 43 , t V n 1 ( w ) d w d v , 1 Γ ( 54 ) 0 t φ ( v ) φ 54 1 ( t ; v ) ψ 3 1 Γ ( 14 ) 0 v φ ( w ) φ 14 1 ( v ; w ) W 2 w , U n 1 ( w ) , D 0 + 76 , t U n 1 ( w ) d w d v + Λ 2 φ 54 1 ( t ; c ) 0.3 Γ ( 54 1 ) 0 0.02 φ ( v ) φ 54 2 ( 0.02 ; v ) × ψ 3 1 Γ ( 14 ) 0 v φ ( w ) φ 14 1 ( v ; w ) W 2 w , U n 1 ( w ) , D 0 + 76 , t U n 1 ( w ) d w d v ) ,
where W 1 and W 2 are provided in Equation (37).

5. Conclusions

In this paper, we aimed to study a new coupled φ - RL fractional implicit differential system involving a p -Laplacian operator (1) with multi-point strips boundary conditions on unbounded domains [ c , ) . We investigated the sufficient criteria of the E a U of the explicit iterative solution for the suggested system (1), by employing the Banach fixed point strategy. Also, we discussed the different types of stability, such as UH , UHR , and semi- UHR . Finally, we provided a numerical example of a coupled φ - RL fractional turbulent flow model to ensure the validity of our findings.

Author Contributions

Writing–original draft: S.T.M.T.; review and editing: H.S., A.M. and H.A.; funding acquisition: H.A.; conceptualization, methodology, formal analysis, and supervision: K.A., H.A., E.I.H. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Deanship of Research and Graduate Studies at King Khalid University under grant number RGP2/458/46.

Data Availability Statement

No data were used to support the findings of this study.

Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/458/46.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014; Volume 6. [Google Scholar]
  2. Mani, G.; Haque, S.; Gnanaprakasam, A.J.; Ege, O.; Mlaiki, N. The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations. Mathematics 2023, 11, 2742. [Google Scholar] [CrossRef]
  3. Boulares, H.; Moumen, A.; Fernane, K.; Alzabut, J.; Saber, H.; Alraqad, T.; Benaissa, M. On Solutions of Fractional Integrodifferential Systems Involving φ-Caputo Derivative and φ-Riemann–Liouville Fractional Integral. Mathematics 2023, 11, 1465. [Google Scholar] [CrossRef]
  4. Wang, X.; Alzabut, J.; Khuddush, M.; Fečkan, M. Solvability of Iterative Classes of Nonlinear Elliptic Equations on an Exterior Domain. Axioms 2023, 12, 474. [Google Scholar] [CrossRef]
  5. Selvam, A.G.M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Adv. Differ. Equations 2020, 2020, 456. [Google Scholar] [CrossRef]
  6. Abdeljawad, T.; Thabet, S.T.M.; Kedim, I.; Vivas-Cortez, M. On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Math. 2024, 9, 7372–7395. [Google Scholar] [CrossRef]
  7. Hamza, A.E.; Osman, O.; Ali, A.; Alsulami, A.; Aldwoah, K.; Mustafa, A.; Saber, H. Fractal-Fractional-Order Modeling of Liver Fibrosis Disease and Its Mathematical Results with Subinterval Transitions. Fractal Fract. 2024, 8, 638. [Google Scholar] [CrossRef]
  8. Saber, H.; Almalahi, M.A.; Albala, H.; Aldwoah, K.; Alsulami, A.; Shah, K.; Moumen, A. Investigating a Nonlinear Fractional Evolution Control Model Using W-Piecewise Hybrid Derivatives: An Application of a Breast Cancer Model. Fractal Fract. 2024, 8, 735. [Google Scholar] [CrossRef]
  9. Srivastava, H.M.; Nain, A.K.; Vats, R.K.; Das, P. A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam–Hyers stability. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 160. [Google Scholar] [CrossRef]
  10. Tan, J.; Li, M. Solutions of fractional differential equations with p-Laplacian operator in Banach spaces. Bound. Value Probl. 2018, 2018, 15. [Google Scholar] [CrossRef]
  11. Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
  12. Feng, C.H.; Tian, B.; Gao, X.Y. Bilinear Bäcklund Transformations, as well as N-Soliton, Breather, Fission/Fusion and Hybrid Solutions for a (3 + 1)-Dimensional Integrable Wave Equation in a Fluid. Qual. Theory Dyn. Syst. 2025, 24, 100. [Google Scholar] [CrossRef]
  13. Gao, X.Y. In an Ocean or a River: Bilinear Auto-Bäcklund Transformations and Similarity Reductions on an Extended Time-Dependent (3 + 1)-Dimensional Shallow Water Wave Equation. China Ocean Eng. 2025, 39, 160–165. [Google Scholar] [CrossRef]
  14. Gao, X.-Y. Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2 + 1)-dimensional generalized modified dispersive water-wave system for the shallow water. Chin. J. Phys. 2024, 92, 1233–1239. [Google Scholar] [CrossRef]
  15. Rezapour, S.; Thabet, S.T.M.; Matar, M.M.; Alzabut, J.; Etemad, S. Some Existence and Stability Criteria to a Generalized FBVP Having Fractional Composite p-Laplacian Operator. J. Funct. Spaces 2021, 2021, 9554076. [Google Scholar] [CrossRef]
  16. Hasanov, M. Initial value problems for fractional p -Laplacian equations with singularity. AIMS Math. 2024, 9, 12800–12813. [Google Scholar] [CrossRef]
  17. Lmou, H.; Hilal, K.; Kajouni, A. On a new class of Φ-Caputo-type fractional differential Langevin equations involving the p -Laplacian operator. Bol. Soc. Mat. Mex. 2024, 30, 61. [Google Scholar] [CrossRef]
  18. Derbazi, C.; Salim, A.; Hammouche, H.; Benchohra, M. Fractional hybrid differential equations with p -Laplacian operator. J. Appl. Pure Math. 2024, 6, 21–36. [Google Scholar] [CrossRef]
  19. Zhang, L.; Zhang, W.; Liu, X.; Jia, M. Positive solutions of fractional p -Laplacian equations with integral boundary value and two parameters. J. Inequal. Appl. 2020, 2020, 2. [Google Scholar] [CrossRef]
  20. Xie, L.; Zhou, J.; Deng, H.; He, Y. Existence and stability of solution for multi-order nonlinear fractional differential equations. AIMS Math. 2022, 7, 16440–16448. [Google Scholar] [CrossRef]
  21. Luca, R.; Tudorache, A. On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval. Fractal Fract. 2023, 7, 458. [Google Scholar] [CrossRef]
  22. Thabet, S.T.M.; Kedim, I.; Abdeljawad, T. Exploring the solutions of Hilfer delayed Duffing problem on the positive real line. Bound. Value Probl. 2024, 2024, 95. [Google Scholar] [CrossRef]
  23. Boutiara, A.; Benbachir, M.; Kaabar, M.K.; Martínez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q–difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
  24. Nyamoradi, N.; Ahmad, B. Hadamard fractional differential equations on an unbounded domain with integro-initial conditions. Qual. Theory Dyn. Syst. 2024, 23, 183. [Google Scholar] [CrossRef]
  25. Zhai, C.; Ren, J. A coupled system of fractional differential equations on the half-line. Bound. Value Probl. 2019, 2019, 117. [Google Scholar] [CrossRef]
  26. Mani, G.; Gnanaprakasam, A.J.; Guran, L.; George, R.; Mitrović, Z.D. Some Results in Fuzzy b-Metric Space with b-Triangular Property and Applications to Fredholm Integral Equations and Dynamic Programming. Mathematics 2023, 11, 4101. [Google Scholar] [CrossRef]
  27. Mani, G.; Gnanaprakasam, A.J.; Ege, O.; Aloqaily, A.; Mlaiki, N. Fixed Point Results in C*-Algebra-Valued Partial b-Metric Spaces with Related Application. Mathematics 2023, 11, 1158. [Google Scholar] [CrossRef]
  28. Gnanaprakasam, A.J.; Mani, G.; Ege, O.; Aloqaily, A.; Mlaiki, N. New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications. Mathematics 2023, 11, 677. [Google Scholar] [CrossRef]
  29. Nallaselli, G.; Gnanaprakasam, A.J.; Mani, G.; Mitrovic, Z.D.; Aloqaily, A.; Mlaiki, N. Integral Equation via Fixed Point Theorems on a New Type of Convex Contraction in b-Metric and 2-Metric Spaces. Mathematics 2023, 11, 344. [Google Scholar] [CrossRef]
  30. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  31. Sousa, J.V.d.; de Oliveira, E.C. On the φ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  32. Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
  33. Khan, H.; Tunc, C.; Chen, W.; Khan, A. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 2018, 8, 1211–1226. [Google Scholar]
  34. Su, X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal.-Theor. 2011, 74, 2844–2852. [Google Scholar] [CrossRef]
  35. Su, X.; Zhang, S. Unbounded solutions to a boundary value problem of fractional order on the halfline. Comput. Math. Appl. 2011, 61, 1079–1087. [Google Scholar] [CrossRef]
  36. Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal.-Theor. 2011, 74, 5975–5986. [Google Scholar] [CrossRef]
  37. de Oliveira, E.C.; Sousa, J.V.d. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef]
  38. Cădariu, L.; Găvruta, L.; Găvruţa, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discr. Math. 2012, 6, 126–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Moumen, A.; Thabet, S.T.M.; Albala, H.; Aldwoah, K.; Saber, H.; Hassan, E.I.; Adam, A. Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal Fract. 2025, 9, 442. https://doi.org/10.3390/fractalfract9070442

AMA Style

Moumen A, Thabet STM, Albala H, Aldwoah K, Saber H, Hassan EI, Adam A. Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal and Fractional. 2025; 9(7):442. https://doi.org/10.3390/fractalfract9070442

Chicago/Turabian Style

Moumen, Abdelkader, Sabri T. M. Thabet, Hussien Albala, Khaled Aldwoah, Hicham Saber, Eltigani I. Hassan, and Alawia Adam. 2025. "Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains" Fractal and Fractional 9, no. 7: 442. https://doi.org/10.3390/fractalfract9070442

APA Style

Moumen, A., Thabet, S. T. M., Albala, H., Aldwoah, K., Saber, H., Hassan, E. I., & Adam, A. (2025). Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal and Fractional, 9(7), 442. https://doi.org/10.3390/fractalfract9070442

Article Metrics

Back to TopTop