Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains
Abstract
1. Introduction
- A new coupled - fractional implicit differential system is considered, with -Laplacian operator and multi-point strip boundary conditions on unbounded domains.
- An applicable Banach space is introduced to allow solutions to be defined on unbounded domains .
- The of explicit iterative solution for the proposed system (1) is investigated by employing the Banach fixed point strategy.
- Some types of the stabilities are established for the suggested coupled system (1).
- The main results are applied to a coupled - fractional turbulent flow model.
- The proposed problem is more generalized than those existing in the literature.
2. Preliminaries
- (i)
- be a convergence sequence tending to a fixed point ;
- (ii)
- Ξ owns one fixed point ;
- (iii)
- If , then
- (i)
- If and , for every , then
- (ii)
- If , for every , then
3. Main Results
3.1. Existences and Uniqueness Result
- (AS2) Suppose there exist positive functions , and continuous functions , and , where
- (AS3) Suppose there exist positive functions , and continuous functions , and , where
- (AS4) Suppose there are constants , and where
3.2. Stability Results
4. Application to the Turbulent Flow System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014; Volume 6. [Google Scholar]
- Mani, G.; Haque, S.; Gnanaprakasam, A.J.; Ege, O.; Mlaiki, N. The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations. Mathematics 2023, 11, 2742. [Google Scholar] [CrossRef]
- Boulares, H.; Moumen, A.; Fernane, K.; Alzabut, J.; Saber, H.; Alraqad, T.; Benaissa, M. On Solutions of Fractional Integrodifferential Systems Involving φ-Caputo Derivative and φ-Riemann–Liouville Fractional Integral. Mathematics 2023, 11, 1465. [Google Scholar] [CrossRef]
- Wang, X.; Alzabut, J.; Khuddush, M.; Fečkan, M. Solvability of Iterative Classes of Nonlinear Elliptic Equations on an Exterior Domain. Axioms 2023, 12, 474. [Google Scholar] [CrossRef]
- Selvam, A.G.M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Adv. Differ. Equations 2020, 2020, 456. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Thabet, S.T.M.; Kedim, I.; Vivas-Cortez, M. On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Math. 2024, 9, 7372–7395. [Google Scholar] [CrossRef]
- Hamza, A.E.; Osman, O.; Ali, A.; Alsulami, A.; Aldwoah, K.; Mustafa, A.; Saber, H. Fractal-Fractional-Order Modeling of Liver Fibrosis Disease and Its Mathematical Results with Subinterval Transitions. Fractal Fract. 2024, 8, 638. [Google Scholar] [CrossRef]
- Saber, H.; Almalahi, M.A.; Albala, H.; Aldwoah, K.; Alsulami, A.; Shah, K.; Moumen, A. Investigating a Nonlinear Fractional Evolution Control Model Using W-Piecewise Hybrid Derivatives: An Application of a Breast Cancer Model. Fractal Fract. 2024, 8, 735. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Nain, A.K.; Vats, R.K.; Das, P. A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam–Hyers stability. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 160. [Google Scholar] [CrossRef]
- Tan, J.; Li, M. Solutions of fractional differential equations with p-Laplacian operator in Banach spaces. Bound. Value Probl. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Feng, C.H.; Tian, B.; Gao, X.Y. Bilinear Bäcklund Transformations, as well as N-Soliton, Breather, Fission/Fusion and Hybrid Solutions for a (3 + 1)-Dimensional Integrable Wave Equation in a Fluid. Qual. Theory Dyn. Syst. 2025, 24, 100. [Google Scholar] [CrossRef]
- Gao, X.Y. In an Ocean or a River: Bilinear Auto-Bäcklund Transformations and Similarity Reductions on an Extended Time-Dependent (3 + 1)-Dimensional Shallow Water Wave Equation. China Ocean Eng. 2025, 39, 160–165. [Google Scholar] [CrossRef]
- Gao, X.-Y. Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2 + 1)-dimensional generalized modified dispersive water-wave system for the shallow water. Chin. J. Phys. 2024, 92, 1233–1239. [Google Scholar] [CrossRef]
- Rezapour, S.; Thabet, S.T.M.; Matar, M.M.; Alzabut, J.; Etemad, S. Some Existence and Stability Criteria to a Generalized FBVP Having Fractional Composite p-Laplacian Operator. J. Funct. Spaces 2021, 2021, 9554076. [Google Scholar] [CrossRef]
- Hasanov, M. Initial value problems for fractional -Laplacian equations with singularity. AIMS Math. 2024, 9, 12800–12813. [Google Scholar] [CrossRef]
- Lmou, H.; Hilal, K.; Kajouni, A. On a new class of Φ-Caputo-type fractional differential Langevin equations involving the -Laplacian operator. Bol. Soc. Mat. Mex. 2024, 30, 61. [Google Scholar] [CrossRef]
- Derbazi, C.; Salim, A.; Hammouche, H.; Benchohra, M. Fractional hybrid differential equations with -Laplacian operator. J. Appl. Pure Math. 2024, 6, 21–36. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Liu, X.; Jia, M. Positive solutions of fractional -Laplacian equations with integral boundary value and two parameters. J. Inequal. Appl. 2020, 2020, 2. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, J.; Deng, H.; He, Y. Existence and stability of solution for multi-order nonlinear fractional differential equations. AIMS Math. 2022, 7, 16440–16448. [Google Scholar] [CrossRef]
- Luca, R.; Tudorache, A. On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval. Fractal Fract. 2023, 7, 458. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Kedim, I.; Abdeljawad, T. Exploring the solutions of Hilfer delayed Duffing problem on the positive real line. Bound. Value Probl. 2024, 2024, 95. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Kaabar, M.K.; Martínez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q–difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Ahmad, B. Hadamard fractional differential equations on an unbounded domain with integro-initial conditions. Qual. Theory Dyn. Syst. 2024, 23, 183. [Google Scholar] [CrossRef]
- Zhai, C.; Ren, J. A coupled system of fractional differential equations on the half-line. Bound. Value Probl. 2019, 2019, 117. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; Guran, L.; George, R.; Mitrović, Z.D. Some Results in Fuzzy b-Metric Space with b-Triangular Property and Applications to Fredholm Integral Equations and Dynamic Programming. Mathematics 2023, 11, 4101. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; Ege, O.; Aloqaily, A.; Mlaiki, N. Fixed Point Results in C*-Algebra-Valued Partial b-Metric Spaces with Related Application. Mathematics 2023, 11, 1158. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.J.; Mani, G.; Ege, O.; Aloqaily, A.; Mlaiki, N. New Fixed Point Results in Orthogonal B-Metric Spaces with Related Applications. Mathematics 2023, 11, 677. [Google Scholar] [CrossRef]
- Nallaselli, G.; Gnanaprakasam, A.J.; Mani, G.; Mitrovic, Z.D.; Aloqaily, A.; Mlaiki, N. Integral Equation via Fixed Point Theorems on a New Type of Convex Contraction in b-Metric and 2-Metric Spaces. Mathematics 2023, 11, 344. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sousa, J.V.d.; de Oliveira, E.C. On the φ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Khan, H.; Tunc, C.; Chen, W.; Khan, A. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 2018, 8, 1211–1226. [Google Scholar]
- Su, X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal.-Theor. 2011, 74, 2844–2852. [Google Scholar] [CrossRef]
- Su, X.; Zhang, S. Unbounded solutions to a boundary value problem of fractional order on the halfline. Comput. Math. Appl. 2011, 61, 1079–1087. [Google Scholar] [CrossRef]
- Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal.-Theor. 2011, 74, 5975–5986. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Sousa, J.V.d. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef]
- Cădariu, L.; Găvruta, L.; Găvruţa, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discr. Math. 2012, 6, 126–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumen, A.; Thabet, S.T.M.; Albala, H.; Aldwoah, K.; Saber, H.; Hassan, E.I.; Adam, A. Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal Fract. 2025, 9, 442. https://doi.org/10.3390/fractalfract9070442
Moumen A, Thabet STM, Albala H, Aldwoah K, Saber H, Hassan EI, Adam A. Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal and Fractional. 2025; 9(7):442. https://doi.org/10.3390/fractalfract9070442
Chicago/Turabian StyleMoumen, Abdelkader, Sabri T. M. Thabet, Hussien Albala, Khaled Aldwoah, Hicham Saber, Eltigani I. Hassan, and Alawia Adam. 2025. "Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains" Fractal and Fractional 9, no. 7: 442. https://doi.org/10.3390/fractalfract9070442
APA StyleMoumen, A., Thabet, S. T. M., Albala, H., Aldwoah, K., Saber, H., Hassan, E. I., & Adam, A. (2025). Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains. Fractal and Fractional, 9(7), 442. https://doi.org/10.3390/fractalfract9070442