Novel Approximations to the Multi-Dimensional Fractional Diffusion Models Using the Tantawy Technique and Two Other Transformed Methods
Abstract
1. Introduction
2. Basic Definitions
- .
3. A Brief Overview of the Proposed Methods for Analyzing the Fractional PDEs
3.1. The Tantawy Technique for Analyzing FDEs
- Step (1)
- According to the Tantawy technique, the analytical approximation to problem (8) is assumed to have the following convergent series form:Henceforth, the following notations may be used in all coming calculations:
- Step (2)
- Step (3)
- Using the Mathematica command for the CFD in Equation (12), it can be written in the following form:
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , ⋯. By solving this system, we can finally determine the implicit value of , , , ⋯ as functions of the IC .
- Step (6)
- Using the given value of the IC in the above obtained system, we finally get the explicit value of , , , ⋯.
- Step (7)
3.2. The NITM for Analyzing FDEs
- Step (1)
- By implementing the ET to Equation (8), we get
- Step (2)
- Step (3)
- By implementing the inverse ET to Equation (19), we have
- Step (4)
- The NITM allows the approximate solution to be expressed as a convergent series solution in the following manner:
- Step (5)
- Step (6)
- Step (7)
- From Equation (24), the following recurrence relation is obtained:
- Step (8)
- By aggregating the values of , , , ⋯, we ultimately get the analytical approximation in the subsequent form
3.3. The HPTM for Analyzing FDEs
- Step (1)
- By implementing the ET to Equation (8), we get
- Step (2)
- Step (3)
- By applying the inverse ET to Equation (29), we obtain
- Step (4)
- The HPM allows the approximate solution to be expressed as a convergent series solution in the following manner:
- Step (5)
- Nonlinear terms are decomposed as follows:
- Step (6)
- Step (7)
- By comparing the coefficients of various order of ,Note that the inhomogenous part is taken only in the first-order approximation.
- Step (8)
- Now, for , the approximate solution in the convergence series form reads
4. Applications and Test Examples
4.1. Example (I)
4.1.1. Analyzing Example (I) via the Tantawy Technique
- Step (1)
- According to the Tantawy technique, the analytical approximation to problem (39) is assumed to have the following convergent series form:
- Step (2)
- Step (3)
- Using the following Mathematica command for the CFD in Equation (44),
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , ⋯:
- Step (6)
- By solving system (49) simultaneously, we can finally determine the implicit value of , , , ⋯ as functions of the IC :
- Step (7)
- Step (8)
- By inserting the obtained values of , , , , ⋯, into the Ansatz (42), we ultimately obtain an analytical approximate solution to Equation (39) as follows:
4.1.2. Analyzing Example (I) via the NITM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (4)
- At the end, the solution in the convergence series form takes the following form:
4.1.3. Analyzing Example (I) via the HPTM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (5)
- Thus, the series convergent solution takes the following final form:
4.2. Example (II)
4.2.1. Analyzing Example (II) via the Tantawy Technique
- Step (1)
- The analytical approximation to problem (71) is assumed to have the following convergent series form:
- Step (2)
- Step (3)
- Using the following Mathematica command for the CFD in Equation (76),
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , ⋯:
- Step (6)
- By solving system (80) simultaneously, we can finally determine the implicit value of , , , ⋯ as functions of the IC :
- Step (7)
- Step (8)
4.2.2. Analyzing Example (II) via the NITM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (4)
- At the end, the solution in the convergence series form is taken the following form
4.2.3. Analyzing Example (II) via the HPTM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (5)
- Thus, the series convergent solution takes the following final form:
4.3. Example (III)
4.3.1. Analyzing Example (III) via the Tantawy Technique
- Step (1)
- The analytical approximation to problem (102) is assumed to have the following convergent series form:
- Step (2)
- Step (3)
- Using the following Mathematica command for the CFD in Equation (76),
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , ⋯:
- Step (6)
- By solving system (111) simultaneously, we can finally determine the implicit value of , , , ⋯ as functions of the IC :
- Step (7)
- Step (8)
4.3.2. Analyzing Example (III) via the NITM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (4)
- At the end, the solution in the convergence series form takes the following form:
4.3.3. Analyzing Example (III) via the HPTM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (5)
- Thus, the series convergent solution takes the following final form:
4.4. Example (IV)
4.4.1. Analyzing Example (IV) via the Tantawy Technique
- Step (1)
- The analytical approximation to problem (133) is assumed to have the following convergent series form:
- Step (2)
- Step (3)
- Using the following Mathematica command for the CFD in Equation (138),
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , …:
- Step (6)
- Step (7)
4.4.2. Analyzing Example (IV) via the NITM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (4)
- At the end, the solution in the convergence series form is taken the following form:
4.4.3. Analyzing Example (IV) via the HPTM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Fourth-order approximation :
- Step (5)
- Thus, the series convergent solution takes the following final form:
4.5. Example (V)
4.5.1. Analyzing Example (V) via the Tantawy Technique
- Step (1)
- The analytical approximate solution to problem (162) is assumed to have the following convergent series form:
- Step (2)
- Step (3)
- Employing the subsequent Mathematica command for the CFD in Equation (167),
- Step (4)
- Step (5)
- Equating the coefficients to zero, we obtain a system of DEs involving , , , , ⋯:
- Step (6)
- Step (7)
4.5.2. Analyzing Example (V) via the NITM
- Step (1)
- By applying the ET to Equation (162), we get
- Step (2)
- By applying the inverse ET to Equation (174), we obtain
- Step (3)
- According to the recurrence relation (25), the following first -order approximations are obtained:
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Step (4)
- At the end, the solution in the convergence series form up to -order approximations reads
4.5.3. Analyzing Example (V) via the HPTM
- Zeroth-order approximation :
- First-order approximation :
- Second-order approximation :
- Third-order approximation :
- Step (5)
- Thus, the series convergent solution takes the following final form:
5. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, B. (Ed.) Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974; Springer: Berlin/Heidelberg, Germany, 2006; Volume 457. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Hilfer, R. Threefold introduction to fractional derivatives. In Anomalous Transport: Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 17–73. [Google Scholar]
- Yavuz, M.; Sulaiman, T.A.; Usta, F.; Bulut, H. Analysis and numerical computations of the fractional regularized long-wave equation with damping term. Math. Methods Appl. Sci. 2021, 44, 7538–7555. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, S.; Samet, B.; Goufo, E.F.D. An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Methods Appl. Sci. 2020, 43, 6062–6080. [Google Scholar] [CrossRef]
- Goufo, E.F.D.; Kumar, S. Shallow water wave models with and without singular kernel: Existence, uniqueness, and similarities. Math. Probl. Eng. 2017, 2017, 4609834. [Google Scholar] [CrossRef]
- Yavuz, M. Characterization of two different fractional operators without singular kernel. Math. Model. Nat. Phen. 2019, 14, 302. [Google Scholar] [CrossRef]
- Goufo, E.F.D.; Kumar, S.; Mugisha, S.B. Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 2020, 130, 109467. [Google Scholar] [CrossRef]
- Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alexandria Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J. Symmetry group analysis of several coupled fractional partial differential equations. Chaos Solitons Fractals 2023, 173, 113603. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhang, Y.F.; Wang, J.J. Investigation of the time fractional generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity. Fractals 2023, 31, 2350033. [Google Scholar] [CrossRef]
- Awadalla, M.; Ganie, A.H.; Fathima, D.; Khan, A.; Alahmadi, J. A mathematical fractional model of waves on Shallow water surfaces: The Korteweg-de Vries equation. AIMS Math. 2024, 9, 10561–10579. [Google Scholar] [CrossRef]
- Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Li, C.P.; Chen, A.; Ye, J.J. Numerical approaches to fractional calculus and fractional ordinary di erential equations. J. Comput. Phys. 2011, 230, 3352–3368. [Google Scholar] [CrossRef]
- Li, C.P.; Wu, R.F.; Ding, H.F. Higher order approximation to Caputo derivative and Caputo ype advectioni usion equations. Commun. Appl. Ind. Math. 2014, 6, e536. [Google Scholar]
- Cao, J.X.; Li, C.P.; Chen, Y.Q. High order approximation to Caputo derivatives and Caputo type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 2015, 18, 735–761. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A new differnce scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Kuo, L.H. A comparison study of the LMAPS method and the LDQ method for time-dependent problems. Eng. Bound. Elem. 2013, 37, 1408–1415. [Google Scholar] [CrossRef]
- Harris, P.J. The mathematical modelling of the motion of biological cells in response to chemical signals. In Computational and Analytic Methods in Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 151–171. [Google Scholar]
- Yazgan, T.; Ilhan, E.; Çelik, E.; Bulut, H. On the new hyperbolic wave solutions to Wu-Zhang system models. Opt. Quantum Electron. 2022, 54, 298. [Google Scholar] [CrossRef]
- Tazgan, T.; Celik, E.; Gülnur, Y.E.L.; Bulut, H. On Survey of the Some Wave Solutions of the Non-Linear Schrödinger Equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. 2023, 36, 819–843. [Google Scholar] [CrossRef]
- Wang, H.; Yamamoto, N. Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. arXiv 2020, arXiv:2006.16928. [Google Scholar] [CrossRef]
- Viguerie, A.; Lorenzo, G.; Auricchio, F.; Baroli, D.; Hughes, T.J.; Patton, A.; Reali, A.; Yankeelov, T.E.; Veneziani, A. Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion. Appl. Math. Lett. 2021, 111, 106617. [Google Scholar] [CrossRef]
- Ahmed, J.J. Designing the shape of corona virus using the PDE method. Gen. Lett. Math. 2020, 8, 75–82. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Purohit, S.D.; Mishra, A.M.; Bohra, M. An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory. Numer. Methods Partial. Differ. Equ. 2021, 37, 1631–1651. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Kumar, S. Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method. J. Association Arab. Univ. Basic Appl. Sci. 2015, 17, 20–26. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Residual power series method for fractional Burger types equations. Nonlinear Eng. 2016, 5, 235–244. [Google Scholar] [CrossRef]
- Das, S. A note on fractional diffusion equations. Chaos Solitons Fractals 2009, 42, 2074–2079. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Hanygad, A. Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 2002, 458, 933–957. [Google Scholar] [CrossRef]
- Mentrelli, A.; Pagnini, G. Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 2015, 293, 427–441. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S.; Xu, H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 2010, 34, 593–600. [Google Scholar] [CrossRef]
- Song, L.; Wang, Q.; Zhang, H. Rational approximation solution of the fractional Sharma–Tasso–Olever equation. J. Comput. Appl. Math. 2009, 224, 210–218. [Google Scholar] [CrossRef]
- Ray, S.S.; Bera, R.K. Solution of an extraordinary differential equation by Adomian decomposition method. J. Appl. Math. 2004, 4, 331–338. [Google Scholar] [CrossRef]
- Sakar, M.G.; Erdogan, F.; Yıldırım, A. Variational iteration method for the time-fractional FornbergWhitham equation. Comput. Math. Appl. 2012, 63, 1382–1388. [Google Scholar] [CrossRef]
- Hemeda, A.A. Homotopy perturbation method for solving partial differential equations of fractional order. J. Math. Anal. 2012, 6, 2431–2448. [Google Scholar] [CrossRef]
- Hemeda, A.A. New Iterative Method: An Application for Solving Fractional Physical Differential Equations. Abstr. Appl. Anal. 2013, 2013, 617010. [Google Scholar] [CrossRef]
- Alrowaily, A.W.; Khalid, M.; Kabir, A.; Salas, A.H.; Tiofack, C.G.L.; Ismaeel, S.M.; El-Tantawy, S.A. On the Laplace new iterative method for modeling fractional positron-acoustic cnoidal waves in electron-positron-ion plasmas with Kaniadakis distributed electrons. Braz. J. Phys. 2025, 55, 106. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 2011, 35, 5662–5672. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62, 2364–2373. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Tiofack, C.G.L.; Mohamadou, A.; Alim, A.; Ismaeel, S.M.E.; Alhejaili, W.; El-Tantawy, S.A. On the “Tantawy Technique” and other methods for analyzing the family of fractional Burgers’ equations: Applications to plasma physics. J. Low Frequency Noise Vib. Act. Control 2025, 14613484251314580. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Tiofack, C.G.L.; Douanla, D.V.; Mohamadou, A.; Alhejaili, W.; Ismaeel, S.M.E.; El-Tantawy, S.A. On the “Tantawy Technique” and other methods for analyzing Fractional Fokker Plank-type Equations. J. Low Frequency Noise Vib. Act. Control 2025, 14613484251319893. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Al-Johani, A.S.; Almuqrin, A.H.; Khan, A.; El-Sherif, L.S. Novel approximations to the fourth-order fractional Cahn–Hillard equations: Application to the Tantawy Technique and other two techniques with Yang transform. J. Low Frequency Noise Vib. Act. Control 2025, 14613484251322240. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Bacha, S.I.H.; Khalid, M.; Alhejaili, W. Application of the Tantawy technique for modeling fractional ion-acoustic waves in electronegative plasmas having Cairns distributed-electrons, Part (I): Fractional KdV Solitary Waves. Braz. J. Phys. 2025, 55, 123. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Bacha, S.I.H.; Khalid, M.; Alhejaili, W. Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative nonthermal Plasmas, Part (II): Fractional modifed KdV-Solitary Waves. Braz. J. Phys. 2025, 55, 176. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Khan, D.; Khan, W.; Khalid, M.; Alhejaili, W. A Novel Approximation to the Fractional KdV Equation Using the Tantawy Technique and Modeling Fractional Electron-Acoustic Cnoidal Waves in a Nonthermal Plasma. Braz. J. Phys. 2025, 55, 163. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Solving evolution equations using a new iterative method. Numer. Methods Partial. Equ. Int. J. 2010, 26, 906–916. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Bhalekar, S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Comput. Math. Appl. 2010, 59, 1801–1809. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Solving Fractional-Order Logistic Equation Using a New Iterative Method. Int. J. Differ. Equ. 2012, 2012, 975829. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Convergence of the New Iterative Method. Int. J. Differ. Equ. 2011, 2011, 989065. [Google Scholar] [CrossRef]
- Madani, M.; Fathizadeh, M.; Khan, Y.; Yildirim, A. On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model. 2011, 53, 1937–1945. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q. Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Appl. 2011, 61, 1963–1967. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Pindza, E.; Karaagac, B.; Oguz, G. Laplace transform-homotopy perturbation method for fractional time diffusive predator–prey models in ecology. Partial. Differ. Equ. Appl. Math. 2024, 9, 100607. [Google Scholar] [CrossRef]
- Biazar, J.; Aminikhah, H. Study of convergence of homotopy perturbation method for systems of partial differential equations. Comput. Math. Appl. 2009, 58, 2221–2230. [Google Scholar] [CrossRef]
- Ait Touchent, K.; Hammouch, Z.; Mekkaoui, T.; Belgacem, F.B. Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal Fract. 2018, 2, 22. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- He, J.H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151, 287–292. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Li, L.; Zhou, C. Elzaki Transform Residual Power Series Method for the Fractional Population Diffusion Equations. Eng. Lett. 2021, 29, 4. [Google Scholar]
- Podlubny, I. Fractional differential equations, to methods of their solution and some of their applications. Fract. Differ. Equ. Introd. Fract. Deriv. 1998, 340. [Google Scholar]
- Khalid, M.; Sultana, M.; Zaidi, F.; Arshad, U. Application of Elzaki Transform Method on Some Fractional Differential Equations. Math. Theory Model. 2015, 5, 89. [Google Scholar]
- AlBaidani, M.M.; Aljuaydi, F.; Alsubaie, S.A.F.; Ganie, A.H.; Khan, A. Computational and Numerical Analysis of the Caputo-Type Fractional Nonlinear Dynamical Systems via Novel Transform. Fractal Fract. 2024, 8, 708. [Google Scholar] [CrossRef]
- Mainardi, F. Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef]
- Cooper, G.J. Error bounds for numerical solutions of ordinary differential equations. Numer. Math. 1971, 18, 162–170. [Google Scholar] [CrossRef]
- Warne, P.G.; Warne, D.P.; Sochacki, J.S.; Parker, G.E.; Carothers, D.C. Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems. Comput. Math. Appl. 2006, 52, 1695–1710. [Google Scholar] [CrossRef]
- Yüzbaşi, Ş. A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Math. Methods Appl. Sci. 2011, 34, 2218–2230. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.H.; Sedighi, H.M. Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative. Math. Biosci. Eng. 2023, 20, 8190–8207. [Google Scholar] [CrossRef]
- Ahmad, H.; Khan, T.A.; Ahmad, I.; Stanimirović, P.S.; Chu, Y.M. A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Res. Phys. 2020, 19, 103462. [Google Scholar] [CrossRef]
- Yadav, S.K.; Purohit, M.; Gour, M.M.; Yadav, L.K.; Mishra, M.N. Hybrid technique for multi-dimensional fractional diffusion problems involving Caputo–Fabrizio derivative. Int. J. Math. Ind. 2024, 16, 2450020. [Google Scholar] [CrossRef]
- Loyinmi, A.C.; Akinfe, T.K. Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Eng. Rep. 2020, 2, e12084. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alyouse, H.A.; Alharthi, M.R. Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma. Chin. J. Phys. 2022, 77, 2454. [Google Scholar] [CrossRef]
- Ismaeel, S.M.; Wazwaz, A.M.; Tag-Eldin, E.; El-Tantawy, S.A. Simulation studies on the dissipative modified Kawahara solitons in a complex plasma. Symmetry 2023, 15, 57. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Salas, A.H.; Matoog, R.T.; El-Tantawy, S.A. On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma. Phys. Fluids 2022, 34, 103105. [Google Scholar] [CrossRef]
- Alharbey, R.A.; Alrefae, W.R.; Malaikah, H.; Tag-Eldin, E.; El-Tantawy, S.A. Novel approximate analytical solutions to the nonplanar modified Kawahara equation and modeling nonlinear structures in electronegative plasmas. Symmetry 2023, 15, 97. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; El-Sherif, L.S.; Bakry, A.M.; Alhejaili, W.; Wazwaz, A.-M. On the analytical approximations to the nonplanar damped Kawahara equation: Cnoidal and solitary waves and their energy. Phys. Fluids 2022, 34, 113103. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Aboelenen, T. Simulation study of planar and nonplanar super rogue waves in an electronegative plasma: Local discontinuous Galerkin method. Phys. Plasmas 2017, 24, 052118. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Alharbey, R.A.; Salas, A.H. Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma. Chaos Solitons Fractals 2022, 155, 111776. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alyousef, H.A.; Alharthi, M.R. Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma. Chaos Solitons Fractals 2022, 1635, 112612. [Google Scholar] [CrossRef]
(41) | (52) | ||
---|---|---|---|
−10 | 1.21627 | 1.21627 | 1.18118 × |
−8 | 0.159864 | 0.159862 | 2.1481 × |
−6 | 1.03397 | 1.03397 | 0.60667 |
−4 | 1.36286 | 1.36286 | 1.64318 × |
−2 | 0.215021 | 0.215019 | 1.97428 × |
0 | 0 | 0 | 0 |
2 | 1.46792 | 1.46792 | 1.97428 × |
4 | 0.320081 | 0.320079 | 1.64318 × |
6 | 0.648971 | 0.64897 | 0.60667 × |
8 | 1.52308 | 1.52308 | 2.1481 × |
10 | 0.466674 | 0.466673 | 1.18118 × |
-Order | -Order | -Order | |
---|---|---|---|
−10 | 1.18118 × | 2.77556 × | 0. |
−8 | 2.1481 × | 3.33067 × | 0. |
−6 | 0.60667 × | 1.11022 × | 0. |
−4 | 1.64318 × | 3.33067 × | 0. |
−2 | 1.97428 × | 4.44089 × | 1.11022 × |
0 | 0 | 0 | 0 |
2 | 1.97428 × | 4.44089 × | 1.11022 × |
4 | 1.64318 × | 3.33067 × | 0. |
6 | 0.60667 × | 1.11022 × | 0. |
8 | 2.1481 × | 3.33067 × | 0. |
10 | 1.18118 × | 2.77556 × | 0. |
(73) | (83) | ||
---|---|---|---|
−10 | 0.23364 | 0.233732 | 0.925165 × |
−8 | −0.424898 | −0.425066 | 1.68251 × |
−6 | 0.12 | 0.120048 | 0.475176 × |
−4 | 0.325023 | 0.325151 | 1.28702 × |
−2 | −0.390514 | −0.390669 | 1.54636 × |
0 | 0 | 0 | 0 |
2 | 0.390514 | 0.390669 | 1.54636 × |
4 | −0.325023 | −0.325151 | 1.28702 × |
6 | −0.12 | −0.120048 | 0.475176 × |
8 | 0.424898 | 0.425066 | 1.68251 × |
10 | −0.23364 | −0.233732 | 0.925165 × |
-Order | -Order | -Order | |
---|---|---|---|
−10 | 0.925165 × | 4.52294 × | 0. |
−8 | 1.68251 × | 8.22564 × | 0. |
−6 | 0.475176 × | 2.32306 × | 0. |
−4 | 1.28702 × | 6.29208 × | 0. |
−2 | 1.54636 × | 7.55984 × | 0. |
0 | 0 | 0 | 0 |
2 | 1.54636 × | 7.55984 × | 0. |
4 | 1.28702 × | 6.29208 × | 0. |
6 | 0.475176 × | 2.32306 × | 0. |
8 | 1.68251 × | 8.22564 × | 0. |
10 | 0.925165 × | 4.52294 × | 0. |
(104) | (114) | ||
---|---|---|---|
−10 | 0.504057 | 0.504056 | 1.06337 × |
−8 | 0.303576 | 0.303574 | 1.69519 × |
−6 | 1.62657 | 1.62657 | 2.47427 × |
−4 | 0.725932 | 0.725931 | 0.364126 × |
−2 | 0.152533 | 0.152531 | 2.17121 × |
0 | 1.53041 | 1.53041 | 2.17121 × |
2 | 0.95701 | 0.957011 | 0.364126 × |
4 | 0.0563702 | 0.0563677 | 2.47427 × |
6 | 1.37937 | 1.37937 | 1.69519 × |
8 | 1.17889 | 1.17889 | 1.06337 × |
10 | 0.0227482 | 0.0227457 | 2.58023 × |
-Order | -Order | -Order | |
---|---|---|---|
−10 | 1.06337 × | 2.22045 × | 0. |
−8 | 1.69519 × | 3.33067 × | 0. |
−6 | 2.47427 × | 5.55112 × | 0. |
−4 | 0.364126 × | 0.832667 × | 0. |
−2 | 2.17121 × | 4.44089 × | 0. |
0 | 2.17121 × | 4.44089 × | 0. |
2 | 0.364126 × | 0.832667 × | 0. |
4 | 2.47427 × | 5.55112 × | 0. |
6 | 1.69519 × | 3.33067 × | 0. |
8 | 1.06337 × | 2.22045 × | 0. |
10 | 2.58023 × | 5.55112 × | 1.11022 × |
(135) | (143) | ||
---|---|---|---|
0 | 1.10517 | 1.10517 | 0.847423 × |
0.2 | 1.34986 | 1.34986 | 1.03504 × |
0.4 | 1.64872 | 1.64872 | 1.26421 × |
0.6 | 2.01375 | 2.01375 | 1.54411 × |
0.8 | 2.4596 | 2.4596 | 1.88597 × |
1 | 3.00417 | 3.00417 | 2.30353 × |
1.2 | 3.6693 | 3.6693 | 2.81354 × |
1.4 | 4.48169 | 4.48169 | 3.43647 × |
1.6 | 5.47395 | 5.47395 | 4.19731 × |
1.8 | 6.68589 | 6.68589 | 5.12661 × |
2 | 8.16617 | 8.16617 | 6.26166 × |
-Order | -Order | -Order | |
---|---|---|---|
0 | 0.847423 × | 8.32667 × | 8.32667 × |
0.2 | 1.03504 × | 5.55112 × | 5.55112 × |
0.4 | 1.26421 × | 0. | 0. |
0.6 | 1.54411 × | 5.55112 × | 5.55112 × |
0.8 | 1.88597 × | 11.1022 × | 11.1022 × |
1 | 2.30353 × | 44.4089 × | 44.4089 × |
1.2 | 2.81354 × | 38.8578 × | 38.8578 × |
1.4 | 3.43647 × | 38.8578 × | 38.8578 × |
1.6 | 4.19731 × | 88.8178 × | 88.8178 × |
1.8 | 5.12661 × | 33.3067 × | 33.3067 × |
2 | 6.26166 × | 44.4089 × | 44.4089 × |
(164) | (179) | 2nd (173) | to (179) | to (173) | |
---|---|---|---|---|---|
−7 | 0.00717645 | 0.00717645 | 0.00717645 | 0.813417 × | 0.896627 × |
−6 | 0.0144481 | 0.0144481 | 0.0144481 | 1.38663 × | 1.71358 × |
−5 | 0.0288735 | 0.0288734 | 0.0288734 | 1.84853 × | 3.07471 × |
−4 | 0.0568705 | 0.0568705 | 0.0568704 | 0.625998 × | 4.81592 × |
−3 | 0.108969 | 0.108969 | 0.108969 | 6.47895 × | 5.42794 × |
−2 | 0.198736 | 0.198736 | 0.198736 | 22.342 × | 1.11902 × |
−1 | 0.334677 | 0.334677 | 0.334677 | 29.6863 × | 9.7287 × |
0 | 0.505 | 0.505 | Indeterminate | 0.313167 × | Indeterminate |
1 | 0.67417 | 0.67417 | 0.67417 | 36.9186 × | 9.56308 × |
2 | 0.807557 | 0.807557 | 0.807557 | 38.0494 × | 1.23241 × |
3 | 0.894855 | 0.894855 | 0.894855 | 22.2572 × | 5.44266 × |
4 | 0.945237 | 0.945237 | 0.945237 | 10.4696 × | 4.79297 × |
5 | 0.972227 | 0.972227 | 0.972227 | 4.68234 × | 3.05153 × |
6 | 0.986111 | 0.986111 | 0.986111 | 2.12959 × | 1.69851 × |
7 | 0.993103 | 0.993103 | 0.993103 | 0.997465 × | 0.888214 × |
: -Order (179) | : -Order (173) | : -Order (173) | |
---|---|---|---|
−7 | 0.813417 × | 0.896627 × | 4.22165 × |
−6 | 1.38663 × | 1.71358 × | 7.55295 × |
−5 | 1.84853 × | 3.07471 × | 11.6105 × |
−4 | 0.625998 × | 4.81592 × | 11.4394 × |
−3 | 6.47895 × | 5.42794 × | 7.55969 × |
−2 | 22.342 × | 1.11902 × | 57.0119 × |
−1 | 29.6863 × | 9.7287 × | 82.6723 × |
0 | 0.313167 × | Indeterminate | 0.666643 × |
1 | 36.9186 × | 9.56308 × | 82.9496 × |
2 | 38.0494 × | 1.23241 × | 56.383 × |
3 | 22.2572 × | 5.44266 × | 7.16657 × |
4 | 10.4696 × | 4.79297 × | 11.5089 × |
5 | 4.68234 × | 3.05153 × | 11.5715 × |
6 | 2.12959 × | 1.69851 × | 7.50794 × |
7 | 0.997465 × | 0.888214 × | 4.19199 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhejaili, W.; Khan, A.; Al-Johani, A.S.; El-Tantawy, S.A. Novel Approximations to the Multi-Dimensional Fractional Diffusion Models Using the Tantawy Technique and Two Other Transformed Methods. Fractal Fract. 2025, 9, 423. https://doi.org/10.3390/fractalfract9070423
Alhejaili W, Khan A, Al-Johani AS, El-Tantawy SA. Novel Approximations to the Multi-Dimensional Fractional Diffusion Models Using the Tantawy Technique and Two Other Transformed Methods. Fractal and Fractional. 2025; 9(7):423. https://doi.org/10.3390/fractalfract9070423
Chicago/Turabian StyleAlhejaili, Weaam, Adnan Khan, Amnah S. Al-Johani, and Samir A. El-Tantawy. 2025. "Novel Approximations to the Multi-Dimensional Fractional Diffusion Models Using the Tantawy Technique and Two Other Transformed Methods" Fractal and Fractional 9, no. 7: 423. https://doi.org/10.3390/fractalfract9070423
APA StyleAlhejaili, W., Khan, A., Al-Johani, A. S., & El-Tantawy, S. A. (2025). Novel Approximations to the Multi-Dimensional Fractional Diffusion Models Using the Tantawy Technique and Two Other Transformed Methods. Fractal and Fractional, 9(7), 423. https://doi.org/10.3390/fractalfract9070423