Sharp Bounds on Hankel Determinant of q-Starlike and q-Convex Functions Subordinate to Secant Hyperbolic Functions
Abstract
1. Introduction and Definitions
2. Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaprawa, P. On a coefficient inequality for Carathéodory functions. Results Math. 2024, 79, 30. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Qiu, J.-L.; Wang, Z.-G.; Li, M. Some characterizations for meromorphic ζ-starlike functions. J. Contemp. Math. Anal. 2025, 60, 36–47. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef]
- Duren, P. Univalent Functions; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Çağlar, M.; Orhan, H.; Srivastava, H.M. Coefficient bounds for q-starlike functions associated with q-Bernoulli numbers. J. Appl. Anal. Comput. 2023, 15, 2354–2364. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2023, 117, 50. [Google Scholar] [CrossRef]
- Khan, M.F.; AbaOud, M. New applications of fractional q-calculus operator for a new subclass of q-starlike functions related with the cardioid domain. Fractal Fract. 2024, 8, 71. [Google Scholar] [CrossRef]
- Gul, B.; Ritelli, D.; Alhefthi, R.K.; Arif, M. A novel family of starlike functions involving quantum calculus and a special function. Fractal Fract. 2025, 9, 179. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike functions associated with secant hyperbolic function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
- Kumar, S.; Breaz, D.; Cotôrlă, L.I.; Çetinkaya, A. Hankel determinants of normalized analytic functions associated with hyperbolic secant function. Symmetry 2024, 16, 1303. [Google Scholar] [CrossRef]
- Raza, M.; Bano, K.; Xin, Q.; Tchier, F.; Malik, S.N. Sharp coefficient inequalities of starlike functions connected with secant hyperbolic function. J. Inequal. Appl. 2024, 1, 56. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Krishna, D.V.; Venkateswarlua, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Srivastava, H.M.; Arif, M.; Liu, Z.-H.; Ullah, K. Sharp bounds on Hankel determinants of bounded turning functions involving the hyperbolic tangent function. Appl. Anal. Discrete Math. 2024, 18, 551–571. [Google Scholar] [CrossRef]
- Rǎducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. C. R. Math. Acad. Sci. Paris 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Bulboacă, T. The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2022, 116, 145. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for starlike functions. Forum Math. 2022, 34, 1249–1254. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, M.S. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Farooq, M.U.; Arif, M.; Malik, S.N.; Tawfiq, F.M.O. A class of meromorphic functions involving higher order derivative. J. Contemp. Math. Anal. 2024, 59, 419–429. [Google Scholar] [CrossRef]
- Zaprawa, P. On Hankel determinant H2(3) for univalent functions. Results Math. 2018, 73, 89. [Google Scholar] [CrossRef]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. Pura Appl. 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hankel determinant of second order for inverse functions of certain classes of univalent functions. Adv. Math. Sci. J. 2023, 12, 519–528. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Cho, N.E.; Alderremy, A.A.; Lupas, A.A.; Mahmoud, E.E.; Khan, S. Sharp inequalities for a class of novel convex functions associated with Gregory polynomials. J. Inequal. Appl. 2024, 1, 140. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M. Sharp coefficient results on the inverse of silverman starlike functions. J. Contemp. Math. Anal. 2024, 59, 279–289. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Şeker, B.; Çekiç, B. Second Hankel determinant of the logarithmic coefficients for a subclass of univalent functions. Miskolc Math. Notes 2024, 25, 479–488. [Google Scholar] [CrossRef]
- Eker, S.S.; Lecko, A.; Çekiç, B.; Şeker, B. The second Hankel determinant of logarithmic coefficients for strongly Ozaki close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2023, 46, 183. [Google Scholar] [CrossRef]
- Allu, V.; Shaji, A. The Sharp bound of the second Hankel determinant of logarithmic coefficients for starlike and convex functions. Bull. Aust. Math. Soc. 2024, 1–9. [Google Scholar] [CrossRef]
- Palei, S.; Soren, M.M.; Cotîrlǎ, L.I. Coefficient bounds for alpha-convex functions involving the linear q-derivative operator connected with the cardioid domain. Fractal Fract. 2025, 9, 172. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Sharma, N.L.; Wirths, K.J. Logarithmic coefficients of the inverse of univalent functions. Results Math. 2018, 73, 160. [Google Scholar] [CrossRef]
- Ali, M.F.; Nurezzaman, M. The second Hankel determinant for some classes of univalent functions. Mediterr. J. Math. 2024, 21, 220. [Google Scholar] [CrossRef]
- Mandal, S.; Roy, P.P.; Ahamed, M.B. Hankel and toeplitz determinants of logarithmic coefficients of inverse functions for certain classes of univalent functions. Iran. J. Sci. 2025, 49, 243–252. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shaba, T.G.; Ibrahim, M.; Tchier, F.; Khan, B. Coefficient bounds and second Hankel determinant for a subclass of symmetric bi-starlike functions involving Euler polynomials. Bull. Sci. Math. 2024, 192, 103405. [Google Scholar] [CrossRef]
- Shi, L.; Abbas, M.; Raza, M.; Arif, M.; Kumam, P. Inverse logarithmic coefficient bounds for starlike functions subordinated to the exponential functions. J. Inequal. Appl. 2024, 1, 17. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Kahramaner, Y.; Polatoglu, Y. Fekete-Szegö inequalities for q-starlike and q-convex functions. Acta Univ. Apulensis 2018, 53, 55–64. [Google Scholar]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Bulut, S. Fekete-Szegö problem for q-starlike functions in connected with k-Fibonacci numbers. Hacet. J. Math. Stat. 2022, 51, 1661–1673. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Z.; Shi, L. Sharp Bounds on Hankel Determinant of q-Starlike and q-Convex Functions Subordinate to Secant Hyperbolic Functions. Fractal Fract. 2025, 9, 346. https://doi.org/10.3390/fractalfract9060346
Zhang L, Wang Z, Shi L. Sharp Bounds on Hankel Determinant of q-Starlike and q-Convex Functions Subordinate to Secant Hyperbolic Functions. Fractal and Fractional. 2025; 9(6):346. https://doi.org/10.3390/fractalfract9060346
Chicago/Turabian StyleZhang, Lifen, Zhigang Wang, and Lei Shi. 2025. "Sharp Bounds on Hankel Determinant of q-Starlike and q-Convex Functions Subordinate to Secant Hyperbolic Functions" Fractal and Fractional 9, no. 6: 346. https://doi.org/10.3390/fractalfract9060346
APA StyleZhang, L., Wang, Z., & Shi, L. (2025). Sharp Bounds on Hankel Determinant of q-Starlike and q-Convex Functions Subordinate to Secant Hyperbolic Functions. Fractal and Fractional, 9(6), 346. https://doi.org/10.3390/fractalfract9060346