Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps
Abstract
1. Introduction
2. Preliminaries
3. Sums for -Cycles of Fractional Difference Maps
4. Numerical Simulations and Discussion
5. Conclusions
- •
- In this paper, the validity of the identity given in Equation (25) for fractional values of is demonstrated numerically, but the theoretical proof is still lacking.
- •
- Based on the results of numerical simulations, in [26], the authors made a conjecture that the Feigenbaum number exists in fractional difference maps and has the same value as in regular maps. Derivation of the analytic expression for in this paper is a small step which, in conjunction with Theorem 1 from [26] defining bifurcation points, may lead to a theoretical proof of this conjecture.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tarasov, V.E.; Zaslavsky, G.M. Fractional equations of kicked systems and discrete maps. J. Phys. A 2008, 41, 435101. [Google Scholar] [CrossRef]
- Edelman, M.; Tarasov, V.E. Fractional standard map. Phys. Lett. A 2009, 374, 279–285. [Google Scholar] [CrossRef]
- Elaydi, S. An Introduction to Difference Equations, 3rd ed.; Springer: New York, NY, USA, 2005; Undergraduate Texts in Mathematics. [Google Scholar]
- Gil, M.I. Difference Equations in Normed Spaces: Stability and Oscillation; Elsevier: Amsterdam, The Netherlands, 2007; Volume 206, North Holland Mathematics Studies. [Google Scholar]
- Kostić, M. Almost Periodic Type Solutions to Integro-Differential-Difference Equations; W. de Gruyter: Berlin, Germany, 2025. [Google Scholar]
- Minh, N.V. On the asymptotic behaviour of Volterra difference equations. J. Differ. Equ. Appl. 2013, 19, 1317–1330. [Google Scholar] [CrossRef]
- Edelman, M. Stability of Fixed Points in Generalized Fractional Maps of the Orders 0 < α < 1. Nonlin. Dyn. 2023, 111, 10247–10254. [Google Scholar] [CrossRef]
- Edelman, M. Evolution of systems with power-law memory: Do we have to die? (Dedicated to the Memory of Valentin Afraimovich). In Demography of Population Health, Aging and Health Expenditures; Skiadas, C.H., Skiadas, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 65–85. [Google Scholar]
- Selvam, A.G.M.; Vianny, D.A. Discrete fractional order SIR epidemic model of childhood diseases with constant vaccination and its stability. Int. J. Tech. Innova. Mod. Engin. Sci. 2018, 4, 405–410. [Google Scholar]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021. [Google Scholar]
- Tarasov, V.E.; Tarasova, V.V. Logistic map with memory from economic model. Chaos. Soliton. Fract. 2017, 95, 84–91. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Peng, Y.; Wang, L. Modeling of discrete fracmemristor and its application. AIP Adv. 2020, 10, 015332. [Google Scholar] [CrossRef]
- Huang, L.-L.; Baleanu, D.; Wu, G.-C.; Zeng, S.-D. A new application of the fractional logistic map. Rom. J. Phys. 2016, 61, 1172–1179. [Google Scholar]
- Ding, D.; Wang, J.; Wang, M.; Yang, Z.; Wang, W.; Niu, Y.; Xu, X. Controllable multistability of fractional-order memristive coupled chaotic map and its application in medical image encryption. Eur. Phys. J. Plus 2023, 138, 908. [Google Scholar] [CrossRef]
- Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing; World Scientific: River Edge, NJ, USA, 2016. [Google Scholar]
- Ortigueira, M. Discrete-time fractional difference calculus: Origins, evolutions, and new formalisms. Fractal Fract. 2023, 7, 502. [Google Scholar] [CrossRef]
- Wu, G.-C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlin. Dyn. 2014, 75, 283–287. [Google Scholar]
- Edelman, M. Fractional maps and fractional attractors. Part ii: Fractional difference α-families of maps. Discont. Nonlinearit. Complex 2015, 4, 391–402. [Google Scholar]
- Peng, Y.; Sun, K.; He, S.; Wang, L. Comments on discrete fractional logistic map and its chaos. Nonlin. Dyn. 2019, 97, 897–901. [Google Scholar]
- Jagan Mohan, J. Quasi-periodic solutions of fractional nabla difference systems. Fract. Differ. Calc. 2017, 7, 339–355. [Google Scholar]
- Kaslik, E.; Sivasundaram, S. Nonexistence of periodic solutions in fractional order dynamical systems and a remarkable difference between integer and fractional order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 2012, 13, 1489–1497. [Google Scholar]
- Anh, P.T.; Babiarz, A.; Czornik, A.; Niezabitowski, M.; Siegmund, S. Asymptotic properties of discrete linear fractional equations. B. Pol. Acad. Sci.-Tech. 2019, 67, 749–759. [Google Scholar]
- Cermák, J.; Kisela, T.; Nechvátal, L. Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 2013, 219, 7012–7022. [Google Scholar]
- Edelman, M. Dynamics of nonlinear systems with power-law memory. In Handbook of Fractional Calculus with Applications: Applications in Physics; Tarasov, V.E., Ed.; De Gruyter: Berlin, Germany, 2019; Volume 4, pp. 103–132. [Google Scholar]
- Edelman, M. Caputo standard α-family of maps: Fractional difference vs. fractional. Chaos 2014, 24, 023137. [Google Scholar]
- Edelman, M.; Helman, A.B.; Smidtaite, R. Bifurcations and transition to chaos in generalized fractional maps of the orders 0 < α < 1. Chaos 2023, 33, 063123. [Google Scholar] [CrossRef]
- Uzdila, E.; Telksniene, I.; Telksnys, T.; Ragulskis, M. Finite-Time Stabilization of Unstable Orbits in the Fractional Difference Logistic Map. Fractal. Fract. 2023, 7, 570. [Google Scholar] [CrossRef]
- Edelman, M. Periodic Points, Stability, Bifurcations, and Transition to Chaos in Generalized Fractional Maps. IFAC-PapersOnLine 2024, 58, 131–142. [Google Scholar] [CrossRef]
- Edelman, M. Cycles in asymptotically stable and chaotic fractional maps. Nonlin. Dyn. 2021, 104, 2829–2841. [Google Scholar] [CrossRef]
- Edelman, M.; Helman, A.B. Asymptotic cycles in fractional maps of arbitrary positive orders. Fract. Calc. Appl. Anal. 2022, 25, 181–206. [Google Scholar] [CrossRef]
- Edelman, M. Asymptotic cycles in fractional generalizations of Multidimensional maps. Fract. Calc. Appl. Anal. 2025, 28, 24–37. [Google Scholar] [CrossRef]
- Abu-Saris, R.; Al-Mdallal, Q. On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 2013, 16, 613–629. [Google Scholar] [CrossRef]
- Čermák, J.; Győri, I.; Nechvátal, L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015, 18, 651–672. [Google Scholar]
- Mozyrska, D.; Wyrwas, M. The z-transform method and delta type fractional difference operators. Discret. Dyn. Nat. Soc. 2015, 2015, 852734. [Google Scholar] [CrossRef]
- Benjamin, A.T.; Chen, B.; Kindred, K. Sums of evenly spaced binomial coefficients. Maths. Mag. 2010, 83, 370–373. [Google Scholar]
- Chen, F.; Luo, X.; Zhou, Y. Existence Results for Nonlinear Fractional Difference Equation. Adv. Differ. Eq. 2011, 2011, 713201. [Google Scholar] [CrossRef]
- Wu, G.-C.; Baleanu, D.; Zeng, S.-D. Discrete chaos in fractional sine and standard maps. Phys. Lett. A 2014, 378, 484–487. [Google Scholar] [CrossRef]
- Wolfram Language & System Documentation Center. FindRoot. Available online: https://reference.wolfram.com/language/ref/FindRoot.html (accessed on 31 March 2025).
- MATLAB Help Center. fsolve. Available online: https://www.mathworks.com/help/optim/ug/fsolve.html (accessed on 31 March 2025).
- Cvitanovic, P. Universality in Chaos; Taylor & Francis Group: New York, NY, USA, 1989. [Google Scholar]
- Feigenbaum, M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978, 19, 25–52. [Google Scholar] [CrossRef]
- Feigenbaum Constants. Wikipedia. Available online: https://en.wikipedia.org/wiki/Feigenbaum_constants (accessed on 31 March 2025).
Variable | Approximate Summation, Equation (28) | Exact Value, Equation (26) |
---|---|---|
−1.600340512580117 | −1.600340512580117 | |
Variable | Approximate Summation, Equation (28) | Exact Value, Equation (26) |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edelman, M. Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps. Fractal Fract. 2025, 9, 231. https://doi.org/10.3390/fractalfract9040231
Edelman M. Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps. Fractal and Fractional. 2025; 9(4):231. https://doi.org/10.3390/fractalfract9040231
Chicago/Turabian StyleEdelman, Mark. 2025. "Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps" Fractal and Fractional 9, no. 4: 231. https://doi.org/10.3390/fractalfract9040231
APA StyleEdelman, M. (2025). Asymptotically Periodic and Bifurcation Points in Fractional Difference Maps. Fractal and Fractional, 9(4), 231. https://doi.org/10.3390/fractalfract9040231