Research Status and the Prospect of Fractal Characteristics of Soil Microstructures
Abstract
1. Introduction
2. Fractal Characteristics of Soil
2.1. Soil Particle Fractal Characteristics
2.2. Pore Fractal Characteristics
2.3. Multi-Fractal Characteristics
3. Calculation Method of Soil Fractal Dimension
3.1. Fractal Dimension of Particle (Pore) Quantity–Particle (Pore) Size Distribution
3.2. Fractal Dimension of Particle Mass–Particle Size Distribution
3.3. Fractal Dimension of Particle (Pore) Volume–Particle (Pore) Size Distribution
3.4. Fractal Dimension of Undisturbed Area (Volume) Distribution of Particles (Pores)
3.5. Fractal Dimension of Particle (Pore) Surface Distribution
3.5.1. Fractal Dimension of Particle Surface Distribution
3.5.2. Fractal Dimension of Pore Surface Distribution
4. Analysis of the Influence of Soil Fractal Characteristics on Macroscopic Properties
4.1. Permeability
4.2. Shear Strength
4.3. Compression Characteristics
5. Conclusions and Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, L.R.; Zhang, M.Y.; Shao, W.M.; Hua, L.L. Microstructure Characteristics and Engineering Properties of Expansive Soil. Chin. J. Geotech. Eng. 1994, 16, 48–57. [Google Scholar]
- Liu, S.Y.; Zhang, J.W. Fractal Approach to Measuring Soil Porosity. J. Southeast Univ. (Nat. Sci. Ed.) 1997, 27, 129–132. [Google Scholar]
- Xu, Y.; Zhang, J.C.; Li, W.P. Research on microstructure fractal features of the saturation soft soil. Rock Soil Mech. 2007, 28, 49–52. [Google Scholar]
- Zhang, K.Y.; Yin, Z.Z.; Mei, G.X. Development of soil’s anisotropy study. Rock Soil Mech. 2004, 9, 1503–1509. [Google Scholar]
- Qian, J.G.; Huang, M.S. Micro-macro mechanismic analysis of plastic anisotropy in soil. Rock Soil Mech. 2011, 32, 88–93. [Google Scholar]
- Lin, P.Y.; Tang, L.S.; Sang, H.T.; Deng, X.B.; Wu, K.; Deng, Z.W. Fractal Geometry in the Past, Present and Future Research of Rock and Soil Mechanics. China Earthq. Eng. J. 2011, 33, 24–29. [Google Scholar]
- Xu, Y.F.; Huang, Y.C. Fractal-textured soils and their unsaturated mechanical properties. Chin. J. Geotech. Eng. 2006, 28, 635–638. [Google Scholar]
- Zhang, X.D.; Lu, Z.J.; Liu, M.; Yang, F.; Zhao, L.H. Analysis of infiltration and stability of shallow slopes under heavy rainfall conditions with fractal theory corrections. J. Harbin Inst. Technol. 2024, 56, 1–14. [Google Scholar]
- Wang, Y.; Duan, X.; Gu, Y.; Wang, S. Fractal Characteristics of the Seepage Erosion Process in Porous Soil. Geofluids 2022, 2022, 3383773. [Google Scholar]
- Kong, B.; Dai, C.X.; Hu, H.; Xia, J.; He, S.H. The Fractal Characteristics of Soft Soil Under Cyclic Loading Based on SEM. Fractal Fract. 2022, 6, 423. [Google Scholar] [CrossRef]
- Torres-Guerrero, C.A.; Álvarez, D.; Preusser, F.; Olarieta, J.R.; Poch, R.M. Evolution of soil porosity in loess-palaeosol sequences of the Ebro Valley, NE Iberia. Catena 2023, 230, 107244. [Google Scholar]
- Liu, X.R.; Tu, Y.L.; Wang, L.F.; Feng, H.; Zhong, Z.L.; Lei, X.D.; Wang, L. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate. Chin. J. Rock Mech. Eng. 2017, 36, 2260–2274. [Google Scholar]
- Li, J.D.; Wang, X.; Zhang, Y.J.; Jiang, D.J.; Liu, D.R.; Ma, X.N.; Wang, J.L. Experimental study on strength and microstructure of loess reinforced with F1 ionic soil stabilizer. J. Southeast Univ. (Nat. Sci. Ed.) 2021, 51, 618–624. [Google Scholar]
- Kong, B.; Yan, Y.; He, H.; Yu, J.; Zou, B.; Chen, Q. Strength and Fractal Characteristics of Artificial Frozen-Thawed Sandy Soft Soil. Fractal Fract. 2024, 8, 393. [Google Scholar] [CrossRef]
- Na, H.; Tao, L.; Wei, Z.; Cosgrove, T.; Mei, Z. Analysis of the Correlation Between Strength and Fractal Dimension of Gravelly Soil in Debris-Flow Source Areas. Open Civ. Eng. J. 2016, 10, 866–876. [Google Scholar]
- Sun, G.C.; Zhang, J.M.; Dang, Y.S.; Ding, C. Microstructure and strength features of warm and ice-rich frozen soil treated with high-performance cements. J. Mt. Sci. 2019, 16, 1470–1482. [Google Scholar]
- Wang, M.L.; Zhang, Y.; Yin, X.X. Microstructure characteristics of expansive soil with coal gangue based on Menger sponge model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 124–130. [Google Scholar]
- Zhu, J.; Qiao, C.S.; Song, Y.; Han, Z.M.; Tu, H.L. Effect of particle characteristics on shear strength of weakly cemented conglomerate in tertiary. J. Harbin Inst. Technol. 2019, 5, 100–109. [Google Scholar]
- Huang, G.H.; Zhan, W.H. Fractal property of soil particle size distribution and its application. Acta Pedol. Sin. 2002, 39, 490–497. [Google Scholar]
- Wang, X.K.; Li, D.J.; Zhu, Y.T.; Zhang, J.Y.; Yuan, F.L. Particle shape analysis of clay based on digital image technology. Chin. J. Geotech. Eng. 2020, 42, 168–171. [Google Scholar]
- Huang, X.W.; Jiang, P.M.; Zhou, A.Z.; Wang, W.; Tang, C.X. Prediction model for soil permeability based on fractal characteristics of particles. Chin. J. Geotech. Eng. 2023, 45, 1907–1915. [Google Scholar]
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772. [Google Scholar] [CrossRef]
- Su, W.; Gao, Y.; Gao, P.; Dong, X.; Wang, G.; Dun, X.; Xu, J. Effects of Different Vegetation Restoration Types on the Fractal Characteristics of Soil Particles in Earthy-Rocky Mountain Area of Northern China. Forests 2022, 13, 1246. [Google Scholar] [CrossRef]
- Zhang, J.R.; Zhu, R.G.; Zhu, W.H. Fractal features of soils characterized by grain size distribution. J. Hydraul. Eng. 2004, 12, 67–71+79. [Google Scholar]
- Dong, L.L.; Zheng, F.L. Fractal Characteristics of Soil Particle Size Distributions in Gully-Hilly Regions of the Loess Plateau, North of Shaanxi, China. Soils 2010, 42, 302–308. [Google Scholar]
- Zuo, S.Y.; Zhang, Y.Z.; Zhao, R.; Zhang, J. Study on fractal characteristics of meso-microstructure of red clay in Guiyang. J. Beijing Jiaotong Univ. 2019, 43, 122–129. [Google Scholar]
- Zhang, P.; Han, X.; Guo, J.; Zhang, H. Fractal Characteristics of Geopolymer Mortar Containing Municipal Solid Waste Incineration Fly Ash and Its Correlations to Pore Structure and Strength. Fractal Fract. 2022, 6, 676. [Google Scholar] [CrossRef]
- Sun, G. Study on crack structure and fractal characteristics of expansive rock and soil body based on microscopic CT scan. Ind. Miner. Process. 2018, 47, 48–51+55. [Google Scholar]
- He, J.; Liu, J.L.; Lv, F. Characterizing Fractal Characteristics of Soil Pores Based on High-Resolution Digital CT Images. Soils 2008, 40, 662–666. [Google Scholar]
- Yang, H.; Cheng, W.M.; Liu, Z.; Wang, W.Y.; Zhao, D.W.; Wang, W.D. Fractal characteristics of effective seepage channel structure of water infusion coal based on NMR experiment. Rock Soil Mech. 2020, 41, 1279–1286. [Google Scholar]
- Tao, G.L.; Zhu, X.L.; Hu, Q.Z.; Zhuang, X.S.; He, J.; Chen, Y. Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression. Rock Soil Mech. 2019, 40, 81–90. [Google Scholar]
- Mao, L.T.; Xue, R.; Yuan, Z.X. Fractal approach on soft soil subgrade microstructure SEM image. J. Chang. Univ. (Nat. Sci. Ed.) 2007, 2, 30–33. [Google Scholar]
- Li, Y.Y.; Wei, Z.; Tong, Y.W.; Zhang, Q.F. Multifractal Characteristics of Water Erosion Factors in Typical Watershed of the Loess Plateau. Res. Soil Water Conserv. 2024, 31, 122–129. [Google Scholar]
- Meng, F.D.; Zhai, Y.; Zhang, Y.S.; Li, Y.B.; Dong, Q. Multifractal Characteristics of Sandstone Microstructure after Freeze-Thaw Damage. Chin. J. Undergr. Space Eng. 2023, 19, 1791–1799. [Google Scholar]
- Wang, J.M.; Zhang, M.; Bai, Z.K.; Yang, R.X.; Guo, L.L. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area. Trans. Chin. Soc. Agric. Eng. 2014, 30, 230–238. [Google Scholar]
- Guan, X.Y.; Yang, P.L.; Ren, S.M.; Li, X.Y.; Lv, Y. Heterogeneity Analysis of Particle Size Distribution for Loamy Soil Based on Multifractal Theory. J. Basic Sci. Eng. 2009, 2, 196–205. [Google Scholar]
- Guan, X.Y.; Yang, P.L.; Lv, Y. Relationships Between Soil Particle Size Distribution and Soil Physical Properties Based on Multifractal. Trans. Chin. Soc. Agric. Mach. 2011, 42, 44–50. [Google Scholar]
- Zhang, J.R.; Wang, J.M.; Qin, Q.; Bai, Z.K. Three-dimensional Multi-fractal Characteristics of Reconstruction Soil Pore at Opencast Coal Mine Dump based on CT Scanning. Chin. J. Soil Sci. 2017, 48, 786–793. [Google Scholar]
- Ju, X.; Jia, Y.; Li, T.; Gao, L.; Gan, M. Morphology and multifractal characteristics of soil pores and their functional implication. Catena 2021, 196, 104822. [Google Scholar]
- Bai, Y.R.; Wang, Y.K. Monofractal and Multifractal Analysis on Soil Particle Distribution in Hilly and Gully Areas of the Loess Plateau. Trans. Chin. Soc. Agric. Mach. 2012, 43, 43–48+42. [Google Scholar]
- Turcotte, D.L. Fractals and fragmentation. J Geophys Res B 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Cao, W.; Zhang, J. Spatial Variability of Fractal Dimensions for Soil Particle Size Distributions and Physical Properties. Trans. Chin. Soc. Agric. Eng. 2010, 26, 94–102. [Google Scholar]
- Yang, G.H.; Li, C.; Shang, Y.; Zhang, Z.G.; Gao, Y.; Li, S.H. Experimental study on improving loess pore properties by slag powder based on CT scanning technology. Water Resour. Hydropower Eng. 2023, 54, 201–209. [Google Scholar]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Yang, P.L.; Luo, Y.P.; Shi, Y.C. Soil fractal characteristics characterized by weight distribution of particle size. Chin. Sci. Bull. 1993, 20, 1896–1899. [Google Scholar]
- Hu, Y.F.; Liu, J.Y.; Zhuang, D.F.; Cao, H.X.; Yan, H.M. Fractal dimension of soil particle size distribution under different land use/land coverage. Acta Pedol. Sin. 2005, 2, 336–339. [Google Scholar]
- Tyler, S.W.; Wheatcraft, S.W. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 1989, 53, 987–996. [Google Scholar] [CrossRef]
- Wang, G.L.; Zhou, S.L.; Zhao, Q.G. Volume fractal dimension of soil particles and its applications to land use. Acta Pedol. Sin. 2005, 42, 545–550. [Google Scholar]
- Tao, G.L.; Zhang, J.R. Two kinds of fractal models characterizing the volume and scale distribution of pores and particles. Chin. Sci. Bull. 2009, 54, 838–846. [Google Scholar] [CrossRef]
- Dang, Y.A.; Li, S.Q.; Wang, G.D.; Zhao, K. Fractal characteristics of soil particle composition for typical types of soil profile on Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2009, 25, 74–78. [Google Scholar]
- Zhang, J.R.; Tao, G.L.; Huang, L.; Yuan, L. The porosity model of rock and soil mass characterizing pore size distribution and its application. Chin. Sci. Bull. 2010, 55, 2661–2670. [Google Scholar]
- Wang, S.F.; Yang, P.; Liu, G.R.; Fan, W.H. Micro pore change and fractal characteristics of artificial freeze thaw soft clay. Chin. J. Geotech. Eng. 2016, 38, 1254–1261. [Google Scholar]
- Tao, G.L.; Zhang, J.R. Fractal theory and its applications in geotechnical engineering. China Sci. 2009, 4, 493–497. [Google Scholar]
- Ding, J.; Sun, H.Q. Comparative analysis of fractal dimension determination methods. Eng. Constr. 2010, 42, 10–13+25. [Google Scholar]
- Cao, J.X.; Song, C.L. Calculation and improvement of the fractal dimension. Inf. Technol. Informatiz. 2017, 10, 19–23. [Google Scholar]
- Liu, H.Y. A method for calculating the box dimension of computer images. Electron. Technol. Softw. Eng. 2015, 20, 87–88. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: San Francisco, CA, USA, 1983. [Google Scholar]
- Qin, W.; Sha, A.M. Fractal features of silt particle size distribution. J. Chang. Univ. (Nat. Sci. Ed.) 2009, 29, 10–14. [Google Scholar]
- Xia, J.D.; Wu, F.Q.; Zhang, Q.F.; Wang, J.; Xia, H.J. Study on Micro Topography Fractal Characteristics of Rainfall Erosion in Loess Area. Yellow River 2016, 38, 78–81. [Google Scholar]
- Wang, B.J.; Shi, B.; Tang, C.S. Study on 3D fractal dimension of clayey soil by use of GIS. Chin. J. Geotech. Eng. 2007, 29, 309–312. [Google Scholar]
- Hou, Z.F.; Xue, J.; Yan, J.G.; Zhu, L.Z.; Chen, Z. Fractional model applicable to characterization of soil surface. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2014, 35, 96–99. [Google Scholar]
- Mandelbrot, B. How long is the coast of Britain? statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [PubMed]
- Hurst, H.E. Long-term storage capacity of reservoirs: An experimental study. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar]
- Liang, Z.; Feng, Z.; Guangxiang, X. Comparison of Fractal Dimension Calculation Methods for Channel Bed Profiles. Procedia Eng. 2012, 28, 252–257. [Google Scholar]
- Yuan, C.Q.; Li, J.; Yan, X.P.; Peng, Z. The use of the fractal description to characterize engineering surfaces and wear particles. Wear 2003, 255, 315–326. [Google Scholar]
- Majumdar, A.; Bhushan, B. Fractal Model of Elastic-Plastic Contact Between Rough Surfaces. J. Tribol. 1991, 1–11. [Google Scholar] [CrossRef]
- Itzhak, G. Exact Spectral Moments and Differentiability of the Weierstrass-Mandelbrot Fractal Function. J. Tribol. 2020, 142, 041501. [Google Scholar]
- Liu, Y.L.; Liang, X.; Zhu, C.K.; Li, J. Prediction of soil water retention curve by surface fractal dimensions. Hydrogeol. Eng. Geol. 2014, 3, 125–130. [Google Scholar]
- Zhang, B.; Li, S. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry. Ind. Eng. Chem. Res. 1995, 34, 1383–1386. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yi, Q.; Liu, H.L.; Li, X.Y.; Yu, H.L. Research on the pore structure and fractal characteristics of the Suoyang earthen site. Sci. Conserv. Archaeol. 2024, 36, 19–31. [Google Scholar]
- Cui, D.S.; Xiang, W.; Chen, Q.; Liu, Q.B.; Lang, L.Z.; Wu, Y.P. Pore Characteristics of Sliding Zone Soils of Huangtupo Landslide by Vacuum Freeze-Dried and Dried Methods. Earth Sci. 2014, 39, 1531–1537. [Google Scholar]
- Peng, J.Y.; Zhang, J.F.; Shen, Z.Z.; Ye, J.B. Effect of grain shape on pore characteristics and permeability of coarse-grained soil. Rock Soil Mech. 2020, 41, 592–600. [Google Scholar]
- Wei, H.H. Study on the microscopic mechanism and permeability model of granular soils considering the particle size distribution. Zhejiang Univ. 2023, 17–90. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Z.; Tian, W.; Fan, Y.; Gao, H. A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection. Energies 2024, 17, 821. [Google Scholar] [CrossRef]
- Deng, Y.S.; Li, S.X.; Ding, S.W.; Cai, C.F.; Xia, D.; Liu, D.L. Research on different soil layers of collapsing gully fractal characteristics and erosion characteristics in Tongcheng. Resour. Environ. Yangtze Basin 2016, 25, 63–70. [Google Scholar]
- Feng, D.L.; Fang, Y.G. Theoretical and experimental research on particle size effect of direct shear mechanical properties of soil. Chin. J. Rock Mech. Eng. 2015, 34, 4307–4319. [Google Scholar]
- Pan, Y.Y. Study on the influence of particle morphology on shear fracture mechanical properties of coarse grained soils. Chengdu Univ. Technol. 2020, 30–97. [Google Scholar] [CrossRef]
- Yi, S.M.; Li, Z.H.; Zhang, Y.Z. The fractal characteristics of fractures in expansion soil and its significance. Chin. J. Geotech. Eng. 1999, 21, 294–298. [Google Scholar]
- Wang, Y.Q.; Wang, Y.J.; Zhang, H.J.; Xiao, J.W.; Wu, Y.; Chen, L. Impacts of soil structure on shear-resistantance of soil under different land uses in Jinyun Mountain of Chongqing City. Trans. Chin. Soc. Agric. Eng. 2006, 22, 40–45. [Google Scholar]
- Chai, Z.Y.; Kang, T.H.; Chen, W.Y.; Yang, Y.K. Fracture evolutionary rules of mudstone under coupled compression and shear and its fractal characteristics. Chin. J. Rock Mech. Eng. 2011, 2, 3844–3850. [Google Scholar]
- Zhang, X.W.; Kong, L.W.; Guo, A.G.; Tuo, Y.F. Evolution of microscopic pore of structured clay in compression process based on SEM and MIP test. Chin. J. Rock Mech. Eng. 2012, 31, 406–412. [Google Scholar]
- Tang, S.L.; Wang, X.Y. Study on the Internal Mechanics and Energy Characteristics of Soil under Different Failure Modes. Appl. Sci. 2023, 13, 8648. [Google Scholar] [CrossRef]
- Xiao, T.; Li, P.; Shao, S.J. Microstructural evolution of compacted loess during consolidation and shearing. Chin. J. Geotech. Eng. 2021, 43, 99–104. [Google Scholar]
- Zhou, C.Y.; Liang, N.; Liu, Z. Fractal characteristics of compression failure of red soft rock and cascading failure process. Rock Soil Mech. 2019, 40, 21–31. [Google Scholar]
Clay Volume Fraction | Silt Volume Fraction | Sand Volume Fraction | Dsilt | Dsand | D0 | D1 | D2 | D1/D0 | Δα | |
---|---|---|---|---|---|---|---|---|---|---|
Clay volume fraction | 1 | |||||||||
Silt volume fraction | 0.755 ** | 1 | ||||||||
Sand volume fraction | −0.795 ** | −0.998 ** | 1 | |||||||
Dsilt | 0.847 ** | 0.339 * | −0.396 * | 1 | ||||||
Dsand | 0.030 | 0.243 | −0.227 | −0.279 | 1 | |||||
D0 | 0.165 | 0.278 | −0.273 | 0.050 | −0.211 | 1 | ||||
D1 | 0.642 ** | 0.553 ** | −0.574 ** | 0.569 ** | −0.350 * | 0.457 ** | 1 | |||
D2 | 0.493 ** | 0.221 | −0.253 | 0.642 ** | −0.584 ** | 0.202 | 0.878 ** | 1 | ||
D1/D0 | 0.177 | −0.001 | −0.016 | 0.263 | 0.044 | −0.865 ** | 0.050 | 0.266 | 1 | |
Δα | 0.524 ** | 0.416 * | −0.436 * | 0.338 * | −0.298 | 0.146 | 0.433 ** | 0.154 | −0.185 | 1 |
Research Method | Calculation Method | Remark |
---|---|---|
Box-counting method [54] | , | R is particle (pore) size and Cα, λα, Cv, and λv are constants describing the shape and size of the particle (pore). |
Fractal model of undisturbed area (volume) [47,49,53,57] | , |
Research Method | Calculation Method | Remark |
---|---|---|
Yardstick method [62] | δ is the size length. N is the number of segments required to measure the curve. R(δ) is the length of the curve measured using size δ. k is the slope of the regression line. | |
R/S analysis method [63] | , | C is a constant. H is the Hurst index. τ is an arbitrary selection value of data interval. |
Structure function method [64,65] | , | E[Z(x + λ) − Z(x)]2 is the arithmetic mean value of the difference square. |
Spectral dimension method [61,66,67] | , | G is the characteristic scale coefficient. γ is the curve frequency density parameter. n is the frequency index of the curve micro-convex. nl is the minimum frequency index of the micro-convex. L is the sampling length, γn = 1/L. m, Φn is the random phase. p(f) is the power spectrum. f is the spatial frequency. G is the intercept. |
Comparative Example | d10 | d30 | d50 | d70 | d90 | e0 | rt | rt-sd | rc | rc-sd | α | vexp/10−4 | vnum/10−4 | η/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Example 1 | 0.25 | 0.40 | 0.71 | 1.25 | 2.00 | 0.548 | 1.5 | 0.2 | 0.04 | 0.01 | 0~π | 2.22 | 2.13 | 3.2 |
Example 2 | 0.25 | 0.50 | 1.00 | 2.00 | 3.70 | 0.548 | 1.5 | 0.2 | 0.04 | 0.01 | 0~π | 5.47 | 5.31 | 2.9 |
Example 3 | 0.25 | 0.56 | 1.25 | 2.61 | 4.03 | 0.548 | 1.5 | 0.2 | 0.04 | 0.01 | 0~π | 5.64 | 5.57 | 1.2 |
Example 4 | 0.25 | 0.63 | 2.00 | 3.07 | 4.23 | 0.548 | 1.5 | 0.2 | 0.04 | 0.01 | 0~π | 6.03 | 5.94 | 1.5 |
Specimen Quantity | 1# | 2# | 3# | 1# | 2# | 3# | 1# | 2# | 3# |
---|---|---|---|---|---|---|---|---|---|
Shear angle | 40° | 45° | 50° | ||||||
Fractal dimension | 2.168 | 2.148 | 2.190 | 2.031 | 2.038 | 2.045 | 1.935 | 1.964 | 1.944 |
R2 | 0.979 | 0.960 | 0.975 | 0.960 | 0.965 | 0.983 | 0.983 | 0.988 | 0.977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jia, S.; Wang, X.; Zhang, Y.; Liu, D. Research Status and the Prospect of Fractal Characteristics of Soil Microstructures. Fractal Fract. 2025, 9, 223. https://doi.org/10.3390/fractalfract9040223
Li J, Jia S, Wang X, Zhang Y, Liu D. Research Status and the Prospect of Fractal Characteristics of Soil Microstructures. Fractal and Fractional. 2025; 9(4):223. https://doi.org/10.3390/fractalfract9040223
Chicago/Turabian StyleLi, Jiandong, Shengjie Jia, Xu Wang, Yanjie Zhang, and Deren Liu. 2025. "Research Status and the Prospect of Fractal Characteristics of Soil Microstructures" Fractal and Fractional 9, no. 4: 223. https://doi.org/10.3390/fractalfract9040223
APA StyleLi, J., Jia, S., Wang, X., Zhang, Y., & Liu, D. (2025). Research Status and the Prospect of Fractal Characteristics of Soil Microstructures. Fractal and Fractional, 9(4), 223. https://doi.org/10.3390/fractalfract9040223