Existence Results for Some p-Laplacian Langevin Problems with a ψ-Hilfer Fractional Derivative with Antiperiodic Boundary Conditions
Abstract
1. Introduction and Motivation
- There exist two positive constants, and , such that
- There exists a positive constant L, such that
2. Preliminary
- The integral of a function u with respect to a function ψ is defined by
- The ψ–Riemann–Liouville fractional derivative of order ν is given by
- The ψ-Hilfer fractional derivative of order ν and type , is defined by
- .
- .
3. Main Results and Their Proofs
4. Application
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Philos. Trans. R. Soc. A 2020, 378, 20200050. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Existence of positive solutions for a coupled system of nonlinear fractional differential equations. Ukr. Math. J. 2019, 71, 39–49. [Google Scholar] [CrossRef]
- Chen, Y.; Ionescu, C. Applied fractional calculus in modelling, analysis and design of control systems. Int. J. Control 2017, 90, 1155–1156. [Google Scholar] [CrossRef]
- Zhou, X.J.; Gao, Q.; Abdullah, O.; Magin, R.L. Studies of anomalous diffusion in the human brain using fractional order calculus. Magn. Reson. Med. 2010, 63, 562–569. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Nouf, A.; Shammakh, W.M.; Ghanmi, A. Existence of solutions for a class of Boundary value problems involving Riemann Liouville derivative with respect to a function. Filomat 2023, 37, 1261–1270. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Ravi, A.; O’Regan, D.; Snezhana, H. Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 2015, 60, 653–676. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, D. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comp. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef]
- Horrigue, S.; Alsulami, M.; Alsaeedi, B.A. The Nehari Manifold for a Class of Singular ψ-Riemann-Liouville Fractional with p-Laplacian Operator Differential Equations. Adv. Appl. Math. Mech. 2024, 16, 1104–1120. [Google Scholar] [CrossRef]
- Da, C.; Sousa, V.J.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; Tavares, L.S.; Ledesma, C.E.T. A variational approach for a problem involving a ψ-hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J. Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010, 2010, 649486. [Google Scholar] [CrossRef]
- Ahmad, B.B.; Nieto, J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Almaghamsi, L.; Alruwaily, Y.; Karthikeyan, K.; El-hady, E.S. On coupled system of Langevin fractional problems with different orders of μ-Caputo fractional derivatives. Fractal Fract. 2023, 7, 337. [Google Scholar] [CrossRef]
- Lim, S.; Li, M.; Teo, L. Langevin equation with two fractional orders. Phys. Lett. A 2008, 372, 6309–6320. [Google Scholar] [CrossRef]
- Almaghamsi, L.; Alghamdi, A.; Ghanmi, A. Existence of solution for a Langevin equation involving the ψ-Hilfer fractional derivative: A variational approach. Aims Math. 2025, 10, 534–550. [Google Scholar] [CrossRef]
- Awadalla, M.; Subramanian, M.; Abuasbeh, K. Existence and Ulam-Hyers Stability Results for a System of Coupled GeneralizedLiouville-Caputo Fractional Langevin Equations with Multipoint Boundary Conditions. Symmetry 2023, 15, 198. [Google Scholar] [CrossRef]
- Salem, A.; Alshehri, H.M.; Almaghamsi, L. Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space. Adv. Differ. Equ. 2021, 2021, 132. [Google Scholar] [CrossRef]
- Zhao, K. Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 2023, 37, 1053–1063. [Google Scholar] [CrossRef]
- Alsaedi, R.; Ghanmi, A. Variational approach for the Kirchhoff problem involving the p-Laplace operator and the ψ-Hilfer derivative. Math. Methods Appl. Sci. 2023, 46, 9286–9297. [Google Scholar] [CrossRef]
- Jingli, X.; Duan, L. Existence of Solutions for Fractional Differential Equations with p-Laplacian Operator and Integral Boundary Conditions. J. Funct. Spaces 2020, 2020, 4739175. [Google Scholar] [CrossRef]
- Zhou, H.; Alzabut, J.; Yang, L. On fractional Langevin differential equations with anti-periodic boundary conditions. Eur. Phys. J. Spec. Top. 2017, 226, 3577–3590. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, S.H.M.; Anatoli, A.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, ISBN 9780444518323. [Google Scholar]
- Kiataramkul, C.; Ntouyas, S.K.; Tariboon, J.; Kijjathanakorn, A. Generalized sturm-Liouville and Langevin equations via Hadamard fractional derivatives with antiperiodic boundary conditions. Bound. Value Probl. 2016, 2016, 217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaghamsi, L.; Horrigue, S. Existence Results for Some p-Laplacian Langevin Problems with a ψ-Hilfer Fractional Derivative with Antiperiodic Boundary Conditions. Fractal Fract. 2025, 9, 194. https://doi.org/10.3390/fractalfract9030194
Almaghamsi L, Horrigue S. Existence Results for Some p-Laplacian Langevin Problems with a ψ-Hilfer Fractional Derivative with Antiperiodic Boundary Conditions. Fractal and Fractional. 2025; 9(3):194. https://doi.org/10.3390/fractalfract9030194
Chicago/Turabian StyleAlmaghamsi, Lamya, and Samah Horrigue. 2025. "Existence Results for Some p-Laplacian Langevin Problems with a ψ-Hilfer Fractional Derivative with Antiperiodic Boundary Conditions" Fractal and Fractional 9, no. 3: 194. https://doi.org/10.3390/fractalfract9030194
APA StyleAlmaghamsi, L., & Horrigue, S. (2025). Existence Results for Some p-Laplacian Langevin Problems with a ψ-Hilfer Fractional Derivative with Antiperiodic Boundary Conditions. Fractal and Fractional, 9(3), 194. https://doi.org/10.3390/fractalfract9030194