Next Article in Journal
Tempered Riemann–Liouville Fractional Operators: Stability Analysis and Their Role in Kinetic Equations
Next Article in Special Issue
Positive Normalized Solutions to a Kind of Fractional Kirchhoff Equation with Critical Growth
Previous Article in Journal
On Some Novel Soliton Structures for the Beta-Time Fractional Benjamin–Ono Dynamical Equation in Fluids
Previous Article in Special Issue
Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance

1
Department of Mathematics, Luoyang Normal University, Luoyang 471022, China
2
Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
3
School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(3), 186; https://doi.org/10.3390/fractalfract9030186
Submission received: 1 February 2025 / Revised: 11 March 2025 / Accepted: 12 March 2025 / Published: 17 March 2025

Abstract

In this paper, we explore the outcomes related to the existence of nonlocal functional boundary value problems associated with pantograph equations utilizing ψ -Hilfer fractional derivatives. The nonlinear term relies on unknown functions which contain a proportional delay term and their fractional derivatives in a higher order. We discuss various existence results for the different “smoothness” requirements of the unknown function by means of Mawhin’s coincidence theory at resonance. We wrap up by providing a detailed explanation accompanied by an illustration of one of the outcomes.

1. Introduction

Fractional differential equations (FDEs) play a crucial role in addressing non-standard dynamic behaviors intertwined with elements of short and long memory and hereditary influences, as highlighted in literature reviews of earlier research [1,2,3,4,5]. Recently, Vanterler and Capelas de Oliveira proposed a novel fractional derivative referred to as the ψ -Hilfer fractional derivative, which brings together various fractional definitions; a concise explanation can be found in the following referenced studies: [6,7,8]. Given that it comprises a large class of fractional derivatives, the reasonable inference is that it has a lot of advantages over classical derivatives and is better suited for practical applications. Recent improvements in FDEs using the ψ -Hilfer fractional derivative include those seen in [9,10,11,12,13,14,15,16,17,18].
One significant and unique topic in fractional calculus is the exploration of pantograph differential equations (PEs), which involve proportional delays. This concept arose from research on the electric current in the pantograph system of electric trains, conducted by Tayler and Ockendonare [19]. Over time, it has found applications in numerous fields of both pure and applied mathematics, such as quantum physics, electrodynamics, number theory, control systems, and probability theory. The pantograph, often utilized in electric trains and electric cells [20,21,22], is commonly seen as a device for measurement and graphing. As a result, there have been various efforts to develop pantograph-type fractional differential equations with a variety of specific boundary conditions [23,24,25,26,27,28,29,30,31,32]. Importantly, we can focus on problems with linear functional conditions [33,34,35,36,37,38], which greatly generalize and extend many specific boundary findings.
As far as we know, the pantograph equation boundary value problems that we talked about earlier with ψ -Hilfer fractional derivatives rarely mention resonance scenarios. Keeping the previous findings in perspective, we will introduce in this paper a set of ψ -Hilfer fractional functional boundary value problems related to pantograph equations:
D 0 + α , β ; ψ H u ( t ) = f ( t , u ( t ) , u ( λ t ) , D 0 + γ 2 ; ψ u ( t ) , D 0 + γ 1 ; ψ u ( t ) ) , λ ( 0 , 1 ) , t ( 0 , 1 ] , I 0 + n γ ; ψ u ( 0 ) = 0 , D 0 + γ i ; ψ u ( 0 ) = 0 , i = 3 , 4 , , n 1 , B 1 ( u ) = 0 , B 2 ( u ) = 0 .
where D 0 + α , β ; ψ H denotes the left ψ -Hilfer fractional derivative of order α ( n 1 < α n , n > 3 ) and type β ( 0 β 1 ) , f C ( [ 0 , 1 ] × R 4 , R ) and γ = α + β ( n α ) . A boundary value problem is said to be at resonance if its corresponding homogeneous boundary value problem has a non-trivial solution; so, B 1 ,   B 2 are continuous linear functionals with the resonance condition ( H ) :
B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) .
This research contains several key findings: To begin with, we examine functional boundary conditions in a highly general manner. Next, there is an effective integration of the ψ -Hilfer fractional derivative α ( n 1 < α n ,   n > 3 ) . Additionally, the pantograph equation we explore has substantial practical applications, which we detail. Lastly, we address the resonance issue for this category of equations, which adds to the initial boundary value challenge for ψ -Hilfer fractional derivatives with pantograph equations.
The structure of this document is laid out as follows: Section 2 includes some introductions and essential concepts regarding linear operators, the coincidence degree continuation theorem, general fractional calculus, and supporting Banach spaces and lemmas. In Section 3, we present three existence findings concerning the various “smoothness” criteria of the unknown function related to resonance, relying on Mawhin’s coincidence theory, and we include a numerical example to illustrate our main findings.
Definition 1. 
We say that u X (please refer to Section 2 for the definition of X) is a solution to the functional boundary value problem (FBVP) (Equation (1)) if u satisfies the equation and boundary conditions in (Equation (1)).

2. Basic Definitions and Preliminaries

We first restate the following definitions, theorem, and auxiliary lemmas related to fractional calculus theory; for details, see [6,7,8].
Definition 2 
([6,7,8]). The left-sided ψ-Riemann–Liouville fractional integral for an integrable function y : [ a , b ] R with respect to another function ψ : [ a , b ] R , ψ ( t ) > 0 , for all t [ a , b ] , is defined as follows:
I a + α ; ψ y ( t ) = 1 Γ ( α ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s , t > a .
Definition 3 
([6,7,8]). The left-sided ψ-Riemann–Liouville fractional derivative of order α , ( n 1 < α < n ) for a function y C n [ a , b ] with respect to another function ψ C n [ a , b ] , ψ ( t ) > 0 , for all t [ a , b ] , is defined as follows:
D a + α ; ψ y ( t ) = 1 Γ ( n α ) 1 ψ ( t ) d d t n a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) n α 1 y ( s ) d s , t > a .
Definition 4 
([6]). Let [ a , b ] be an interval such that a < b + and ψ C n [ a , b ] , ψ ( t ) > 0 for all t [ a , b ] . The (left-sided) ψ-Hilfer fractional derivative of function y C n [ a , b ] of order α and type 0 β 1 is determined as follows:
D a + α , β ; ψ H y ( t ) = I a + β ( n α ) 1 ψ ( t ) d d t n I a + ( 1 β ) ( n α ) y ( t ) = I a + γ α ; ψ D a + γ ; ψ y ( t ) ,
where n 1 < α < n ,   0 β 1 ,   γ = α + β ( n α ) ,   n = [ α ] + 1 .
Lemma 1 
([6,7,8]). Assume f C 1 [ 0 , 1 ] ,   α > 0 and 0 β 1 ; then, D a + α , β ; ψ H I a + α ; ψ f ( t ) = f ( t ) .
Lemma 2 
([6,7,8]).
(1)
If f C n [ a , b ] , n 1 < α < n , 0 β 1 and γ = α + β ( n α ) , then
I a + α ; ψ D a + α , β ; ψ H f ( t ) = f ( t ) k = 1 n ( ψ ( t ) ψ ( a ) ) γ k Γ ( γ k + 1 ) f ψ [ n k ] I a + ( 1 β ) ( n α ) ; ψ f ( a ) ,
where f ψ [ n k ] f ( t ) : = 1 ψ ( t ) d d t n k f ( t ) .
(2)
Assume α > 0 and δ > 0 ; then,
D 0 + α ; ψ ( ψ ( x ) ψ ( a ) ) δ 1 = Γ ( δ ) Γ ( δ α ) ( ψ ( x ) ψ ( a ) ) δ α 1 ,
and
I 0 + α ; ψ ( ψ ( x ) ψ ( a ) ) δ 1 = Γ ( δ ) Γ ( δ + α ) ( ψ ( x ) ψ ( a ) ) δ + α 1 .
Example 1. 
D 0 + α ; ψ ( ψ ( x ) ψ ( a ) ) α i = 0 , i = 1 , 2 , , n .
Definition 5 
([39,40]). Let X, Z be real Banach spaces and L : d o m L X Z be a linear operator. X is said to be the Fredholm operator of index zero provided that the following are true:
(i)
Im L is a closed subset of Z;
(ii)
dim Ker L = codim Im L < + .
Let P : X X and Q : Z Z be continuous projectors such that Im P = Ker L , Ker Q = Im L , X = Ker L Ker P , and Z = Im L Im Q . It follows that L | dom L Ker P : dom L Ker P Im L is reversible. We denote the inverse of the mapping as K P (the generalized inverse operator of L). If Ω is an open bounded subset of X such that dom L Ω , the mapping N : X Z will be called L-compact on Ω ¯ , if Q N ( Ω ¯ ) is bounded and K P ( I Q ) N : Ω ¯ X is compact.
Theorem 1 
(see [39,40] for the Mawhin continuation theorem). Let L : dom L X Z be a Fredholm operator of index zero and N : X Z be L-compact on Ω ¯ . We assume that the following conditions are satisfied:
(i)
L u λ N u for every ( u , λ ) [ ( dom L Ker L ) Ω ] × ( 0 , 1 ) ;
(ii)
N u Im L for every u Ker L Ω ;
(iii)
deg ( Q N | Ker L , Ω Ker L , 0 ) 0 , where Q : Z Z is a continuous projection such that Im L = Ker Q .
Then, the equation L u = N u   has at least one solution in dom L Ω ¯ .
As is usual, we shall use the classical Banach space Y = C [ 0 , 1 ] with norm y C [ 0 , 1 ] = max t [ 0 , 1 ] | y ( t ) | and the Banach space C n γ ; ψ ( 0 , 1 ] : = { u | ( ψ ( t ) ψ ( 0 ) ) n γ u ( t ) C [ 0 , 1 ] } with norm u C n γ ; ψ = ( ψ ( t ) ψ ( 0 ) ) n γ u C [ 0 , 1 ] = max t [ 0 , 1 ] { | ( ψ ( t ) ψ ( 0 ) ) n γ u ( t ) | } . Then, we can define and easily verify that the space X = { u | u C n γ ; ψ ( 0 , 1 ] , D 0 + γ 1 ; ψ u C [ 0 , 1 ] , D 0 + γ 2 ; ψ u C [ 0 , 1 ] } with norm u X = ( ψ ( t ) ψ ( 0 ) ) n γ u C [ 0 , 1 ] + D 0 + γ 1 ; ψ u C [ 0 , 1 ] + D 0 + γ 2 ; ψ u C [ 0 , 1 ] is the Banach space.
We define the linear operator as L : X dom L X Y , the nonlinear operator N : X Y as
L u = H D 0 + α , β ; ψ u ( t ) , u dom L ,
and
N u = f ( t , u ( t ) , u ( λ t ) , D 0 + γ 2 ; ψ u ( t ) , D 0 + γ 1 ; ψ u ( t ) ) , λ ( 0 , 1 ) , t [ 0 , 1 ] ,
where dom L = { u X , H D 0 + α , β ; ψ u C [ 0 , 1 ] , I 0 + n γ ; ψ u ( 0 ) = 0 , D 0 + γ i ; ψ u ( 0 ) = 0 , i = 3 , 4 , , n 1 , B i ( u ) = 0 , i = 1 , 2 } .
Then, the F B V P (Equation (1)) is equivalent to the operator equation L u = N u , u dom L .
To achieve the outcomes we want, we need to use the following hypotheses.
Hypothesis 1 (H1).
The linear functionals B i : X R satisfy B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) = σ d , B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = σ c , B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) = d ,   B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = c , where c 2 + d 2 0 , σ , c , d R .
Hypothesis 2 (H2).
The functionals B 1 , B 2 : X R are continuous and linearly independent, with the respective norms β 1 , β 2 , ; that is, | B i ( u ) | β i u X .
Hypothesis 3 (H3).
There exists a function h ( t ) C [ 0 , 1 ] such that the equation
( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 h ( s ) d s = 1 .
The next statement shows that there is indeed a function h ( t ) for which the assumption in ( H 3 ) is true.
Lemma 3. 
Assume that ( H 1 ) holds. Then, there exists h ( t ) C [ 0 , 1 ] such that
( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 h ( s ) d s 0 .
Proof. 
For convenience, we set B = B 1 σ B 2 , and h n ( t ) = ( ψ ( t ) ψ ( 0 ) ) n 2 + γ α , n 2 , ψ ( t ) C n [ 0 , 1 ] . Then, there must exist n N such that B I 0 + α ; ψ h n ( t ) 0 .
If not, B ( I 0 + α ; ψ h n ( t ) ) = 0 ; that is, B ( ( ψ ( t ) ψ ( 0 ) ) n 2 + γ ) = 0 . From ( H 1 ) , B ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) = B ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = 0 . Thus, B ( p ) = 0 for every ‘polynomial’ p ( t ) = i = 0 n ( ψ ( t ) ψ ( 0 ) ) γ + i 2 . It is easy to verify that { ( ψ ( t ) ψ ( 0 ) ) γ + n 2 } n N is dense in X, thus we obtain B ( u ) 0 , u X . This is a contradiction (as B 1 and B 2 are linearly independent on X).
There must be some i 2 , i N such that B ( ( ψ ( t ) ψ ( 0 ) ) γ + i 2 ) 0 . For these i, we simply take h ( t ) = h i ( t ) B ( I 0 + α ; ψ h i ( t ) ) . Thus, there exists an h Y satisfying ( H 3 ) . □

3. Main Results

Lemma 4. 
If assumptions ( H ) , ( H 1 ) , and ( H 3 ) hold, then the mapping L : dom L X Y is a Fredholm mapping of index zero.
Proof. 
If u dom L , and L u = 0 , we can deduce that u = c 1 ( ψ ( t ) ψ ( 0 ) ) γ 1 + c 2 ( ψ ( t ) ψ ( 0 ) ) γ 2 , B 1 ( c 1 ( ψ ( t ) ψ ( 0 ) ) γ 1 + c 2 ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = σ d c 1 + σ c c 2 = 0 , and B 2 ( c 1 ( ψ ( t ) ψ ( 0 ) ) γ 1 + c 2 ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = d c 1 + c c 2 = 0 , which means that
Ker L = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) : c 2 + d 2 0 , c 0 R , dimKer L = 1 .
Now, we can show that
Im L = y Y : ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s = 0 .
Let y Im L ; then, there exists u dom L such that y = L u , and it follows that
u ( t ) = ( ψ ( t ) ψ ( 0 ) ) γ 1 Γ ( γ ) f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) + ( ψ ( t ) ψ ( 0 ) ) γ 2 Γ ( γ 1 ) f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) + 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s ,
which, with B 1 ( u ) = B 2 ( u ) = 0 , leads to
0 = B i ( u ) = B i I 0 + α ; ψ y + f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ ) B i ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) + f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ 1 ) · B i ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) , i = 1 , 2 .
Then, we can deduce from ( H 1 ) that
B 1 I 0 + α ; ψ y + f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ ) B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) + f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ 1 ) · B 1 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = B 1 I 0 + α ; ψ y + σ d f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ ) + σ c f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ 1 ) = 0 , B 2 I 0 + α ; ψ y + f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ ) B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 1 ) + f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ 1 ) B 2 ( ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = B 2 I 0 + α ; ψ y + d f ψ [ n 1 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ ) + c f ψ [ n 2 ] I 0 + ( 1 β ) ( n α ) ; ψ u ( 0 ) Γ ( γ 1 ) = 0 .
Therefore, y y Y : ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s = 0 . That is,
Im L { y Y : ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) α 1 y ( s ) d s = 0 } .
If y y Y : ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s = 0 , then
u ( t ) = d ( ψ ( t ) ψ ( 0 ) ) γ 1 + c ( ψ ( t ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 I 0 + α ; ψ y + I 0 + α ; ψ y ( t ) .
It is easy to find that L u = y and B 1 ( u ) = B 2 ( u ) = 0 , which implies that
y Y : ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( 0 ) ) α 1 y ( s ) d s = 0 Im L .
Hence, we obtain Equation (2).
We define Q : Y Y as follows:
Q y = ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 y ( s ) d s h ( t ) ,
where h ( t ) is introduced in condition ( H 3 ) .
From the property of h ( t ) in ( H 3 ) , we know that Q 2 y = Q y . So, Q : Y Y is a continuous linear projector such that Im L = Ker Q and Im Q = { c h ( t ) | c R } . It is clear that Y = Im L Im Q and dimKer L = codimIm L = 1 ; that is, L is a Fredholm mapping of index zero. □
Take P : X X , where
P u ( t ) = c D 0 + γ 1 ; ψ u ( 0 ) d ( γ 1 ) D 0 + γ 2 ; ψ u ( 0 ) Γ ( γ ) c 2 + d 2 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) .
For u X , set u = u P u + P u . It is not hard to check that P 2 u = P u , u X , since D 0 + γ 1 ; ψ ( ψ ( t ) ψ ( 0 ) ) γ 1 = Γ ( γ ) , D 0 + γ 1 ; ψ ( ψ ( t ) ψ ( 0 ) ) γ 2 = 0 , D 0 + γ 2 ; ψ ( ψ ( t ) ψ ( 0 ) ) γ 1 = Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) and D 0 + γ 2 ; ψ ( ψ ( t ) ψ ( 0 ) ) γ 2 = Γ ( γ 1 ) .
It is quite simple to verify that Im P = Ker L ; moreover, we take u 0 = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) Im P . If, in addition, c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) Ker P , then 0 = c D 0 + γ 1 ; ψ u 0 ( 0 ) d ( γ 1 ) D 0 + γ 2 ; ψ u 0 ( 0 ) = c 0 Γ ( γ ) ( c 2 + d 2 ) . We must obtain c 0 = 0 by setting Γ ( γ ) 0 , c 2 + d 2 0 , i.e., Im P Ker P = { 0 } . So, X = Ker L Ker P .
Lemma 5. 
The mapping K P : Y dom L Ker P is defined by
K P y ( t ) = d ( ψ ( t ) ψ ( 0 ) ) γ 1 + c ( ψ ( t ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 I 0 + α ; ψ y + I 0 + α ; ψ y ( t )
and is the generalized inverse operator of L.
Proof. 
In view of Definition 4 and Lemma 2, one can show that L K P y = H D 0 + α , β ; ψ ( K P y ( t ) ) = I 0 + γ α ; ψ D 0 + γ ; ψ ( K P y ( t ) ) = I 0 + γ α ; ψ D 0 + γ ; ψ I 0 + α ; ψ y ( t ) = y ( t ) for all y Y . Meanwhile, it is suffices to show that I 0 + n γ ; ψ ( K P y ) ( 0 ) = 0 ,   D 0 + γ i ; ψ ( K P y ) ( 0 ) = 0 ,   i = 3 , 4 , , n 1 ,   B i ( K P y ) = 0 ,   i = 1 , 2 and
P ( K P y ) ( t ) = c D 0 + γ 1 ; ψ ( K P y ) ( 0 ) d ( γ 1 ) D 0 + γ 2 ; ψ ( K P y ) ( 0 ) Γ ( γ ) c 2 + d 2 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = c d Γ ( γ ) c 2 + d 2 B 2 ( I 0 + α ; ψ y ) + c d ( γ 1 ) Γ ( γ 1 ) c 2 + d 2 B 2 ( I 0 + α ; ψ y ) Γ ( γ ) ( c 2 + d 2 ) ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = 0 .
In accordance with the equations above, K P y dom L Ker P . If u dom L Ker P , from Lemma 2(1) and ( H 1 ) it can be deduced that
K P L u ( t ) = K P ( H D 0 + α , β ; ψ u ) ( t ) = d ( ψ ( t ) ψ ( 0 ) ) γ 1 + c ( ψ ( t ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 I 0 + α ; ψ D 0 + α , β ; ψ H u + I 0 + α ; ψ D 0 + α , β ; ψ H u ( t ) = d ( ψ ( t ) ψ ( 0 ) ) γ 1 + c ( ψ ( t ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 ( u ( t ) k = 1 n 1 ( ψ ( t ) ψ ( 0 ) ) γ k Γ ( γ k + 1 ) D 0 + γ k ; ψ u ( 0 ) ( ψ ( t ) ψ ( 0 ) ) γ n Γ ( γ n + 1 ) I 0 + n γ ; ψ u ( 0 ) ) + u ( t ) k = 1 n 1 ( ψ ( t ) ψ ( 0 ) ) γ k Γ ( γ k + 1 ) D 0 + γ k ; ψ u ( 0 ) ( ψ ( t ) ψ ( 0 ) ) γ n Γ ( γ n + 1 ) I 0 + n γ ; ψ u ( 0 ) = d ( ψ ( t ) ψ ( 0 ) ) γ 1 + c ( ψ ( t ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 ( u ( t ) ( ψ ( t ) ψ ( 0 ) ) γ 1 Γ ( γ ) D 0 + γ 1 ; ψ u ( 0 ) ( ψ ( t ) ψ ( 0 ) ) γ 2 Γ ( γ 1 ) D 0 + γ 2 ; ψ u ( 0 ) ) + u ( t ) ( ψ ( t ) ψ ( 0 ) ) γ 1 Γ ( γ ) D 0 + γ 1 ; ψ u ( 0 )
( ψ ( t ) ψ ( 0 ) ) γ 2 Γ ( γ 1 ) D 0 + γ 2 ; ψ u ( 0 ) = u ( t ) c D 0 + γ 1 ; ψ u ( 0 ) d ( γ 1 ) D 0 + γ 2 ; ψ u ( 0 ) Γ ( γ ) c 2 + d 2 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = u ( t ) P u ( t ) = u ( t ) .
Thus,
K P = ( L | dom L Ker P ) 1 .
The next lemma provides the norm estimates needed for the following results.
Lemma 6. 
For y Y , we now show that
( ψ ( t ) ψ ( 0 ) ) n γ K P y C [ 0 , 1 ] B · y C [ 0 , 1 ] ,
D 0 + γ 1 ; ψ K P y C [ 0 , 1 ] C · y C [ 0 , 1 ] ,
B = | d | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | c | ( ψ ( t ) ψ ( 0 ) ) n 2 c 2 + d 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) , C = | d | Γ ( γ ) β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) , A = ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) ,
and
D 0 + γ 2 ; ψ K P y C [ 0 , 1 ] D · y C [ 0 , 1 ] ,
D = | d | Γ ( γ ) + | c | Γ ( γ 1 ) c 2 + d 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) .
Moreover,
K P y X K P · y C [ 0 , 1 ] ,
K P = B + C + D .
Proof. 
For y Y , we can deduce that
| ( ψ ( t ) ψ ( 0 ) ) n γ I 0 + α ; ψ y ( t ) | ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) y C [ 0 , 1 ] , | D 0 + γ 1 ; ψ I 0 + α ; ψ y ( t ) | ( ψ ( 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) y C [ 0 , 1 ] , a n d | D 0 + γ 2 ; ψ I 0 + α ; ψ y ( t ) | ( ψ ( 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) y C [ 0 , 1 ] ,
which means that
I 0 + α ; ψ y X ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) y C [ 0 , 1 ] : = A · y C [ 0 , 1 ] .
Based on the assumption of ( H 2 ) , we can derive the following:
| ( ψ ( t ) ψ ( 0 ) ) n γ K P y ( t ) | = | d ( ψ ( t ) ψ ( 0 ) ) n 1 + c ( ψ ( t ) ψ ( 0 ) ) n 2 c 2 + d 2 B 2 I 0 + α ; ψ y + ( ψ ( t ) ψ ( 0 ) ) n γ I 0 + α ; ψ y ( t ) | | d | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | c | ( ψ ( 1 ) ψ ( 0 ) ) n 2 c 2 + d 2 β 2 · I 0 + α ; ψ y X + ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) y C [ 0 , 1 ] ( | d | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | c | ( ψ ( 1 ) ψ ( 0 ) ) n 2 c 2 + d 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + n Γ ( α + 1 ) ) · y C [ 0 , 1 ] : = B · y C [ 0 , 1 ] ,
| D 0 + γ 1 ; ψ K P y ( t ) | = | d Γ ( γ ) B 2 I 0 + α ; ψ y + D 0 + γ 1 ; ψ I 0 + α ; ψ y ( t ) | | d | Γ ( γ ) β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) · y C [ 0 , 1 ] : = C · y C [ 0 , 1 ] ,
and
| D 0 + γ 2 ; ψ K P y ( t ) | = | d Γ ( γ ) + c Γ ( γ 1 ) c 2 + d 2 B 2 I 0 + α ; ψ y + D 0 + γ 2 ; ψ I 0 + α ; ψ y ( t ) | | d | Γ ( γ ) + | c | Γ ( γ 1 ) c 2 + d 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) · y C [ 0 , 1 ] : = D · y C [ 0 , 1 ] .
Hence, we can conclude that
K P y X = ( ψ ( t ) ψ ( 0 ) ) n γ K P y C [ 0 , 1 ] + D 0 + γ 1 ; ψ ( K P y ) C [ 0 , 1 ] + D 0 + γ 2 ; ψ ( K P y ) C [ 0 , 1 ] ( B + C + D ) · y C [ 0 , 1 ] : = K P · y C [ 0 , 1 ] ,
which yields our desired result. □
Lemma 7. 
N is L-compact on Ω ¯ if dom L Ω ¯ , where Ω is an open and bounded subset of X.
Proof. 
Since Ω is a bounded set and functions h ( t ) and f ( t , u ( t ) , u ( λ t ) , D 0 + γ 2 ; ψ u ( t ) , D 0 + γ 1 ; ψ u ( t ) ) are continuous for t [ 0 , 1 ] , there exist constants M 1 , M 2 > 0 such that N u C [ 0 , 1 ] M 1 and sup t [ 0 , 1 ] | h ( t ) | M 2 hold and u Ω ¯ . Invoking I 0 + α ; ψ y X A · y C [ 0 , 1 ] and Hypothesis ( H 2 ) , it is easy to see that
| Q N u | = | ( B 1 σ B 2 ) 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( 0 ) ) α 1 N u ( s ) d s h ( t ) | ( β 1 + | σ | β 2 ) I 0 + α ; ψ f X · | h ( t ) | A M 1 M 2 ( β 1 + | σ | β 2 ) ,
hence, Q N ( Ω ¯ ) is bounded.
Now, we will prove that K P ( I Q ) N : Ω ¯ X is compact. The proof process is divided into two steps:
  • Step 1  K P ( I Q ) N : Ω ¯ X is uniformly bounded. Based on K P y C [ 0 , 1 ] K P · y C [ 0 , 1 ] and ( H 2 ) , we obtain
    K P ( I Q ) N u X K P · ( I Q ) N u C [ 0 , 1 ] K P · ( N u C [ 0 , 1 ] + Q N u C [ 0 , 1 ] ) < K P · ( M 1 + A M 1 M 2 ( β 1 + | σ | β 2 ) ) < .
  • Step 2  { K P ( I Q ) N u : u Ω ¯ } is equicontinuous on [ 0 , 1 ] .
For each u Ω ¯ , 0 t 1 < t 2 1 , one can show that
| ( ψ ( t 2 ) ψ ( 0 ) ) n γ K P ( I Q ) N u ( t 2 ) ( ψ ( t 1 ) ψ ( 0 ) ) n γ K P ( I Q ) N u ( t 1 ) | = | ( ψ ( t 2 ) ψ ( 0 ) ) n γ d ( ψ ( t 2 ) ψ ( 0 ) ) γ 1 + c ( ψ ( t 2 ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u + ( ψ ( t 1 ) ψ ( 0 ) ) n γ d ( ψ ( t 1 ) ψ ( 0 ) ) γ 1 + c ( ψ ( t 1 ) ψ ( 0 ) ) γ 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u + ( ψ ( t 2 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 2 ) ( ψ ( t 1 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 1 ) | = | d ( ψ ( t 2 ) ψ ( 0 ) ) n 1 + c ( ψ ( t 2 ) ψ ( 0 ) ) n 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u + d ( ψ ( t 1 ) ψ ( 0 ) ) n 1 + c ( ψ ( t 1 ) ψ ( 0 ) ) n 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u + ( ψ ( t 2 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 2 ) ( ψ ( t 1 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 1 ) | .
To begin with, one knows that
| d ( ψ ( t 2 ) ψ ( 0 ) ) n 1 + c ( ψ ( t 2 ) ψ ( 0 ) ) n 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u + d ( ψ ( t 1 ) ψ ( 0 ) ) n 1 + c ( ψ ( t 1 ) ψ ( 0 ) ) n 2 c 2 + d 2 B 2 I 0 + α ; ψ ( I Q ) N u | | d | [ ( ψ ( t 2 ) ψ ( 0 ) ) n 1 ( ψ ( t 1 ) ψ ( 0 ) ) n 1 ] + | c | [ ( ψ ( t 2 ) ψ ( 0 ) ) n 2 ( ψ ( t 1 ) ψ ( 0 ) ) n 2 ] c 2 + d 2 · A M 1 β 2 ( 1 + A M 2 ( β 1 + | σ | β 2 ) ) ,
and
| ( ψ ( t 2 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 2 ) ( ψ ( t 1 ) ψ ( 0 ) ) n γ I 0 + α ; ψ ( I Q ) N u ( t 1 ) | = | ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 2 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s ( ψ ( t 1 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 1 ψ ( s ) ( ψ ( t 1 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | = | ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 1 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s + ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) t 1 t 2 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s + | ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 1 ψ ( s ) ( ψ ( t 1 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 1 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | ( ψ ( t 1 ) ψ ( 0 ) ) n γ Γ ( α ) 0 t 1 ψ ( s ) ( ψ ( t 1 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) | 0 t 1 ψ ( s ) [ ( ψ ( t 2 ) ψ ( s ) ) α 1 ( ψ ( t 1 ) ψ ( s ) ) α 1 ] ( I Q ) N u ( s ) d s | + ( ψ ( t 2 ) ψ ( 0 ) ) n γ ( ψ ( t 1 ) ψ ( 0 ) ) n γ Γ ( α ) | 0 t 1 ψ ( s ) ( ψ ( t 1 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | + ( ψ ( t 2 ) ψ ( 0 ) ) n γ Γ ( α ) | t 1 t 2 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) α 1 ( I Q ) N u ( s ) d s | M 1 ( 1 + A M 2 ( β 1 + | σ | β 2 ) ) [ ( ψ ( t 2 ) ψ ( 0 ) ) n γ + α ( ψ ( t 1 ) ψ ( 0 ) ) n γ + α ] .
As t 1 t 2 , it is easy to find that
| ( ψ ( t 2 ) ψ ( 0 ) ) n γ K P ( I Q ) N u ( t 2 ) ( ψ ( t 1 ) ψ ( 0 ) ) n γ K P ( I Q ) N u ( t 1 ) | 0 .
Next, from the definition of K P , we can derive the following:
| D 0 + γ 1 ; ψ ( K P ( I Q ) N u ) ( t 2 ) D 0 + γ 1 ; ψ ( K P ( I Q ) N u ) ( t 1 ) | = | I 0 + α γ + 1 ; ψ ( I Q ) N u ( t 2 ) I 0 + α γ + 1 ; ψ ( I Q ) N u ( t 1 ) | M 1 ( 1 + A M 2 ( β 1 + | σ | β 2 ) ) ( ψ ( t 2 ) ψ ( 0 ) ) α γ + 1 ( ψ ( t 1 ) ψ ( 0 ) ) α γ + 1 Γ ( α γ + 2 ) .
Furthermore,
| D 0 + γ 2 ; ψ ( K P ( I Q ) N u ) ( t 2 ) D 0 + γ 2 ; ψ ( K P ( I Q ) N u ) ( t 1 ) | = | I 0 + α γ + 2 ; ψ ( I Q ) N u ( t 2 ) I 0 + α γ + 2 ; ψ ( I Q ) N u ( t 1 ) | M 1 ( 1 + A M 2 ( β 1 + | σ | β 2 ) ) ( ψ ( t 2 ) ψ ( 0 ) ) α γ + 2 ( ψ ( t 1 ) ψ ( 0 ) ) α γ + 2 Γ ( α γ + 3 ) .
Taking t 1 t 2 , from the continuity of ( ψ ( t ) ψ ( 0 ) ) α γ + 1 and ( ψ ( t ) ψ ( 0 ) ) α γ + 2 for t [ 0 , 1 ] , we can deduce that Equation (8) 0 and Equation (9) 0 .
By taking the prior estimation (Steps 1–2) into account and applying the Arzelà–Ascoli theorem, it holds that the operator K P ( I Q ) N : Ω ¯ X is compact and Q N ( Ω ¯ ) is bounded, i.e., N is L-compact. □
Lemma 8. 
Assume c 0 and the following hypotheses hold:
Hypothesis 4 (H4).
There exists a constant M 0 > 0 such that if | D 0 + γ 1 ; ψ u ( t ) | > M 0 , for all t [ 0 , 1 ] , then
( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) 0 .
Hypothesis 5 (H5).
There exist some positive functions a i ( t ) i = 0 , 1 , 2 , 3 , 4 , with a 0 ( t ) , a 1 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 3 ( t ) , and a 4 ( t ) Y , such that for all ( u 1 , u 2 , u 3 , u 4 ) R 4 , t [ 0 , 1 ]
| f ( t , u 1 , u 2 , u 3 , u 4 ) | a 0 ( t ) + a 1 ( t ) | u 1 | + a 2 ( t ) | u 2 | + a 3 ( t ) | u 3 | + a 4 ( t ) | u 4 | ,
provided that ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) < 1 . Then, the set Ω 1 = { u dom L Ker L : L u = λ N u , for some λ ( 0 , 1 ) } is bounded.
Proof. 
Take u Ω 1 ; then, N u Im L , thus we obtain ( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) = 0 . This, together with ( H 4 ) , means that there exists t 0 [ 0 , 1 ] such that | D 0 + γ 1 ; ψ u ( t 0 ) | M 0 .
Write u ( t ) = u 1 ( t ) + u 2 ( t ) , where u 1 = ( I P ) u dom L Ker P and u 2 = P u Im P . Thus, u 1 = K P L u 1 = K P L ( I P ) u = K P L u = λ K P N u . In light of (Equation (5)) in Lemma 7, one obtains
u 1 X K P · N u C [ 0 , 1 ] .
Now, u 2 = u u 1 , so D 0 + γ 1 ; ψ u 2 = D 0 + γ 1 ; ψ u D 0 + γ 1 ; ψ u 1 and
| D 0 + γ 1 ; ψ u 2 ( t 0 ) | | D 0 + γ 1 ; ψ u 2 ( t 0 ) | + | D 0 + γ 1 ; ψ u 1 ( t 0 ) | M 0 + C · N u C [ 0 , 1 ] ,
where C is the same as in (Lemma 6). Recall that u 2 ( t ) = P u ( t ) = c ( u ) ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) , where
c ( u ) = c D 0 + γ 1 ; ψ u ( 0 ) d ( γ 1 ) D 0 + γ 2 ; ψ u ( 0 ) Γ ( γ ) ( c 2 + d 2 )
is introduced for the sake of brevity. Hence, it follows from Equation (11) that | c ( u ) | M 0 + C · N u C [ 0 , 1 ] | c | Γ ( γ ) .
Furthermore, it is straightforward to derive that the following inequalities:
| u 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) n γ | | c ( u ) | · | c ( ψ ( t ) ψ ( 0 ) ) n 1 d ( ψ ( t ) ψ ( 0 ) ) n 2 | ( M 0 + C · N u C [ 0 , 1 ] ) ( ( ψ ( t ) ψ ( 0 ) ) n 1 Γ ( γ ) + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 | c | Γ ( γ ) ) , | D 0 + γ 1 ; ψ u 2 ( t ) | = | c ( u ) · c Γ ( γ ) | M 0 + C · N u C [ 0 , 1 ] ,
and
| D 0 + γ 2 ; ψ u 2 ( t ) | = | c ( u ) · c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | ( M 0 + C · N u C [ 0 , 1 ] ) ( ( ψ ( 1 ) ψ ( 0 ) ) + | d | | c | ( γ 1 ) ) ,
which leads to
u 2 X M 0 ( 1 + ψ ( 1 ) ψ ( 0 ) + | d | | c | ( γ 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( γ ) + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 | c | Γ ( γ ) ) + C · N u C [ 0 , 1 ] 1 + ψ ( 1 ) ψ ( 0 ) + | d | | c | ( γ 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( γ ) + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 | c | Γ ( γ ) : = E + F · N u C [ 0 , 1 ] ,
where E : = M 0 ( 1 + ψ ( 1 ) ψ ( 0 ) + | d | | c | ( γ 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( γ ) + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 | c | Γ ( γ ) ) and F : = C · 1 + ψ ( 1 ) ψ ( 0 ) + | d | | c | ( γ 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( γ ) + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 | c | Γ ( γ ) , which together with Equation (10) and ( H 5 ) , yield
u X u 1 X + u 2 X ( K P + F ) N u C [ 0 , 1 ] + E E + ( K P + F ) ( a 0 C [ 0 , 1 ] + ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) · u X ) E + ( K P + F ) a 0 C [ 0 , 1 ] 1 ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) .
As a result, Ω 1 is bounded. This proof is thus complete. □
Since L is a Fredholem mapping of index zero, there exists an isomorphism J : Im Q Ker L . For this, the operator J is defined by
J g ( t ) = ( B 1 σ B 2 ) I 0 + α ; ψ g ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) .
Obviously, J : Y Ker L . If g Im Q , then g = c 0 h , where h the same as in ( H 3 ) , and
J g ( t ) = J ( c 0 h ) ( t ) = ( B 1 σ B 2 ) I 0 + α ; ψ c 0 h ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) .
Thus, J : Im Q Ker L is an isomorphism.
Lemma 9. 
Assume ( H 1 ) and ( H 2 ) and the following hypothesis holds:
Hypothesis 6 (H6).
There exists a constant M 3 > 0 such that either for each c 0 R
c 0 ( B 1 σ B 2 ) I 0 + α ; ψ f ( t , u c 0 ( t ) , u c 0 ( λ t ) , D 0 + γ 2 ; ψ u c 0 ( t ) , D 0 + γ 1 ; ψ u c 0 ( t ) ) > 0 ,   f o r | c 0 | > M 3 ,
or
c 0 ( B 1 σ B 2 ) I 0 + α ; ψ f ( t , u c 0 ( t ) , u c 0 ( λ t ) , D 0 + γ 2 ; ψ u c 0 ( t ) , D 0 + γ 1 ; ψ u c 0 ( t ) ) < 0 ,   f o r | c 0 | > M 3 ,
where u c 0 ( t ) = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) . Then, sets Ω 2 = { u Ker L : N u Im L } and Ω 3 = { u Ker L : ρ δ I u + ( 1 δ ) J Q N u = 0 , δ [ 0 , 1 ] } are bounded, where J : I m Q K e r L is a homeomorphism with J ( g ) = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) :
ρ = 1 , i f ( 12 ) h o l d s ; 1 . i f ( 13 ) h o l d s .
Proof. 
If u c 0 Ω 2 , it is easy to find that u c 0 ( t ) = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) and Q N u c 0 = 0 , which represents ( B 1 σ B 2 ) I 0 + α ; ψ N u c 0 h ( t ) = 0 , | c 0 | M 3 . Now, let us estimate the norm of u c 0 in X.
( ψ ( t ) ψ ( 0 ) ) n γ u c 0 C [ 0 , 1 ] = max t [ 0 , 1 ] { c 0 ( c ( ψ ( t ) ψ ( 0 ) ) n 1 d ( ψ ( t ) ψ ( 0 ) ) n 2 ) } M 3 ( | c | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 ) ,
D 0 + γ 1 ; ψ u c 0 C [ 0 , 1 ] = | c 0 c Γ ( γ ) | M 3 c Γ ( γ ) ,
and
D 0 + γ 2 ; ψ u c 0 C [ 0 , 1 ] = max t [ 0 , 1 ] { c 0 c ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) } M 3 | c | ( ψ ( 1 ) ψ ( 0 ) ) + | d | Γ ( γ 1 ) .
By using the above estimates, we obtain u c 0 X M 3 | c | ( Γ ( γ ) + ψ ( 1 ) ψ ( 0 ) + ( ψ ( t ) ψ ( 0 ) ) n 1 ) + | d | ( Γ ( γ 1 ) + ( ψ ( t ) ψ ( 0 ) ) n 2 ) < ; that is, Ω 2 is bounded.
For u Ω 3 , u ( t ) = c 0 c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 and ρ δ I u + ( 1 δ ) J Q N u = 0 .
If δ = 1 , then u 0 . If δ = 0 , then Q N u = 0 , i.e., J Q N u = J Q N [ c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ] = 0 , which follows from the proof of the boundedness of Ω 2 as u X < .
If δ ( 0 , 1 ) , we claim that ρ δ c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) + ( 1 δ ) J Q N [ c 0 c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ] = 0 , and then, taking | c 0 | > M 3 , we obtain
ρ δ c 0 + ( 1 δ ) ( B 1 σ B 2 ) I 0 + α ; ψ f ( t , u c 0 ( t ) , u c 0 ( λ t ) , D 0 + γ 2 ; ψ u c 0 ( t ) , D 0 + γ 1 ; ψ u c 0 ( t ) ) = 0 ,
which, with multiplying by c 0 , leads to
ρ δ c 0 2 = ( 1 δ ) c 0 ( B 1 σ B 2 ) ( I 0 + α ; ψ f ( t , u c 0 ( t ) , u c 0 ( λ t ) , D 0 + γ 1 ; ψ u c 0 ( t ) , D 0 + γ 2 ; ψ u c 0 ( t ) ) ,
which is impossible! Thus, we have | c 0 | M 3 . So, the boundedness of Ω 3 follows u X M 3 c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 X . □
Theorem 2. 
Assume (H) and ( H 1 H 6 ) hold. Then, the functional boundary value problem (Equation (1))has at least one solution in X.
Proof. 
Let Ω be open and bounded such that Ω Ω 1 ¯ Ω 2 ¯ Ω 3 ¯ { } . In light of the boundedness of Ω 1 and Ω 2 in Lemmas 8 and 9, we can derive L u N λ u for u Ω ( dom L K e r L ) ,   λ ( 0 , 1 ) and N u 0 ,   u Ker L Ω . Thus, ( i ) and ( i i ) of Theorem 1 hold.
Let H ( u , δ ) = ρ δ I u + ( 1 δ ) J Q N u , δ [ 0 , 1 ] , u Ker L Ω ; noticing the boundedness of Ω 3 in Lemma 9 and Ω 3 Ω , we know that H ( u , δ ) 0 , u Ker L Ω , δ [ 0 , 1 ] .
For u Ker L Ω , we find that u ( t ) = c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) 0 , and H ( u , 1 ) = ρ c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) 0 . To achieve this, via Lemma 9, we know that H ( u , 0 ) = J Q N c 0 ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) 0 .
Thus, by calculating the invariance of degree under a homotopy, we find that
d e g ( J Q N , Ω Ker L , 0 ) = d e g H ( · , 0 ) , Ω Ker L , 0 = d e g H ( · , 1 ) , Ω Ker L , 0 = d e g ρ I , Ω Ker L , 0 = ± 1 0 ,
therefore, the condition ( i i i ) of Theorem 1 holds, and the existence result for F B V P (Equation (1)) is provided in Ω ¯ . □
Example 2. 
We introduce an example in order to demonstrate the application of the previous result. Consider the nonlocal boundary value problems of the following pantograph equation:
D 0 + 7 2 , 1 2 ; 5 t 2 H u ( t ) = t + ( 5 t 2 ) 1 4 sin u ( t ) 10 4 + ( 5 t 2 ) 1 4 sin u ( t 2 ) 10 4 + 1 10 4 D 0 + 7 4 ; 5 t 2 u ( t ) | D 0 + 7 4 ; 5 t 2 u ( t ) | + 1 + D 0 + 11 4 ; 5 t 2 u ( t ) 10 4 , t ( 0 , 1 ] , I 0 + 1 4 ; 5 t 2 u ( 0 ) = 0 , D 0 + 3 4 ; 5 t 2 u ( 0 ) = 0 , B 1 ( u ) = D 0 + 7 4 ; 5 t 2 u ( 1 ) 5 3 D 0 + 11 4 ; 5 t 2 u ( 0 ) = 0 , B 2 ( u ) = u ( 0 ) + 8 25 I 0 + 1 4 ; 5 t 2 u ( 1 ) = 0 .
It is easy to see that a 0 ( t ) = 1 ,   a 1 ( t ) = a 2 ( t ) = ( 5 t 2 ) 1 4 10 4 ,   a 3 ( t ) = a 4 ( t ) = 1 10 4 , B 1 ( ( 5 t 2 ) 11 4 ) = 5 6 Γ ( 15 4 ) ,   B 1 ( ( 5 t 2 ) 7 4 ) = Γ ( 11 4 ) ,   B 2 ( ( 5 t 2 ) 11 4 ) = 5 6 Γ ( 15 4 ) , and B 2 ( ( 5 t 2 ) 7 4 ) = Γ ( 11 4 ) . The problem is seen at resonance and when c = Γ ( 11 4 ) ,   d = 5 6 Γ ( 15 4 ) , and σ = 1 . At this point, we can take h ( t ) = 48 125 ( 5 t 2 ) 1 4 Γ ( 19 4 ) to ensure that ( B 1 σ B 2 ) ( I 0 + 7 2 ; 5 t 2 h ( t ) ) = 1 , i.e., ( H 3 ) holds.
Also,
| B 2 ( u ) | = | u ( 0 ) + 8 25 I 0 + 1 4 ; 5 t 2 u ( 1 ) | | u ( 0 ) | + 8 25 I 0 + 1 4 ; 5 t 2 | u ( 1 ) | ( 8 25 · ( 5 2 ) 1 4 + 1 ) · u X 3 2 u X ,
which represents β 2 = 3 2 . Then, we can directly calculate
( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) 0.9764 < 1 .
Hence, ( H 5 ) holds.
If D 0 + 11 4 ; 5 t 2 u ( t ) > 10 , 004 , then f ( t , u ( t ) , D 0 + 1 2 u ( t ) ) > 0 .
If D 0 + 11 4 ; 5 t 2 u ( t ) < 10 , 004 , then f ( t , u ( t ) , D 0 + 1 2 u ( t ) ) < 0 .
Hence,
( B 1 σ B 2 ) ( I 0 + 7 2 ; 5 t 2 N u ) = I 0 + 7 2 ; 5 t 2 N u ( 1 ) 8 25 I 0 + 15 4 ; 5 t 2 N u ( 1 ) = 0 1 [ ( 5 2 ) 7 2 Γ ( 7 4 ) ( 1 s ) 5 2 8 25 ( 5 2 ) 11 4 Γ ( 15 4 ) ( 1 s ) 11 4 ] N u ( s ) d s 0
provided that u dom L Ker L satisfies | D 0 + 11 4 ; 5 t 2 u ( t ) | > M 0 = 10 , 004 , since ( 5 2 ) 7 2 Γ ( 7 4 ) > 8 25 ( 5 2 ) 11 4 Γ ( 15 4 ) and ( 1 s ) 5 2 > ( 1 s ) 11 4 , s ( 0 , 1 ) . So, Hypothesis ( H 4 ) holds.
Last, for u Ker L , where u c 0 ( t ) = c 0 ( Γ ( 11 4 ) ( 5 t 2 ) 11 4 5 6 Γ ( 15 4 ) ( 5 t 2 ) 7 4 ) , one can choose M 3 = 1407 > 0 such that c 0 ( B 1 σ B 2 ) I 0 + 7 2 ; 5 t 2 N u c 0 ( t ) > 0 , which shows that ( H 6 ) is confirmed, since
c 0 N u c 0 ( t ) = c 0 t + c 0 ( 5 t 2 ) 1 4 10 4 sin ( u c 0 ( t ) ) + c 0 ( 5 t 2 ) 1 4 10 4 sin ( u c 0 ( t 2 ) ) + c 0 10 4 D 0 + 7 4 ; 5 t 2 u c 0 ( t ) | D 0 + 7 4 ; 5 t 2 u c 0 ( t ) | + 1 + c 0 D 0 + 11 4 ; 5 t 2 u ( t ) 10 4 | c 0 | 2 | c 0 | ( 5 2 ) 1 4 10 4 | c 0 | 10 4 + c 0 2 10 4 Γ ( 11 4 ) Γ ( 15 4 ) = | c 0 | ( | c 0 | Γ ( 11 4 ) Γ ( 15 4 ) 10 4 1 + 2 ( 5 2 ) 1 4 + 10 4 10 4 ) > 0 ,
and
c 0 ( B 1 σ B 2 ) ( I 0 + 7 2 ; 5 t 2 N u c 0 ( t ) ) = c 0 ( I 0 + 7 2 ; 5 t 2 N u c 0 ( 1 ) 8 25 I 0 + 15 4 ; 5 t 2 N u c 0 ( 1 ) ) = 0 1 [ ( 5 2 ) 7 2 Γ ( 7 4 ) ( 1 s ) 5 2 8 25 ( 5 2 ) 11 4 Γ ( 15 4 ) ( 1 s ) 11 4 ] c 0 N u c 0 ( s ) d s > 0 , | c 0 | > 1407 .
It follows from Theorem 2 that there must be at least one solution in X.
Theorem 3. 
Assume that ( H ) , ( H 1 H 3 ) with d c < 0 or d c > ( γ 1 ) ( ψ ( 1 ) ψ ( 0 ) ) , ( H 6 ) (of Lemma 9), and the following conditions hold:
Hypothesis 4′ (H4′).
There exists a constant M 0 > 0 such that if | D 0 + γ 2 ; ψ u ( t ) | > M 0 , for all t [ 0 , 1 ] , then
( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) 0 .
Hypothesis 5′ (H5′).
There exist some positive functions a i ( t ) , i = 0 , 1 , 2 , 3 , 4 , with a 0 ( t ) , a 1 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 3 ( t ) , and a 4 ( t ) Y , such that for all ( u 1 , u 2 , u 3 , u 4 ) R 4 , t [ 0 , 1 ] ,
| f ( t , u 1 , u 2 , u 3 , u 4 ) | a 0 ( t ) + a 1 ( t ) | u 1 | + a 2 ( t ) | u 2 | + a 3 ( t ) | u 3 | + a 4 ( t ) | u 4 | ,
provided that ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) < 1 . Then, the functional boundary value problem (Equation (1)) has at least one solution in X.
Proof. 
As in the proof of Lemma 8, u Ω 1 means ( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) = 0 . From (H4′), we know that there exists a constant t 0 [ 0 , 1 ] such that | D 0 + γ 2 ; ψ u ( t 0 ) | M 0 . □
Remark 1. 
Similarly to Lemma 8, in this case | D 0 + γ 1 ; ψ u ( t 0 ) | M 0 | does not come for free.
Similarly, u ( t ) = u 1 ( t ) + u 2 ( t ) , where u 1 = ( I P ) u dom L Ker P and u 2 = P u Im P . Thus, u 1 = K P L u 1 = K P L ( I P ) u = K P L u = λ K P N u . As in the proof of Lemma 8,
u 1 X K P · N u C [ 0 , 1 ] .
Now, u 2 = u u 1 0 . In view of (Equation (5)), it is easy to deduce that D 0 + γ 2 ; ψ u 2 = D 0 + γ 2 ; ψ u D 0 + γ 2 ; ψ u 1 and
| D 0 + γ 2 ; ψ u 2 ( t 0 ) | | D 0 + γ 2 ; ψ u ( t 0 ) | + | D 0 + γ 2 ; ψ u 1 ( t 0 ) | M 0 + D · N u C [ 0 , 1 ] .
As in the proof of Lemma 8, u 2 ( t ) = P u ( t ) = c ( u ) ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) . Hence, it follows from (15) that
| c ( u ) | M 0 + D · N u C [ 0 , 1 ] min t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } = M 0 + D · N u C [ 0 , 1 ] min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } ,
by c Γ ( γ ) ( ψ ( t 0 ) ψ ( 0 ) ) d Γ ( γ 1 ) 0 in [ 0 , 1 ] . Then,
| u 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) n γ | | c ( u ) | · | c ( ψ ( t ) ψ ( 0 ) ) n 1 d ( ψ ( t ) ψ ( 0 ) ) n 2 | ( M 0 + D · N u C [ 0 , 1 ] ) | c | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } , | D 0 + γ 1 ; ψ u 2 ( t ) | = | c ( u ) · c Γ ( γ ) | | c | Γ ( γ ) ( M 0 + D · N u C [ 0 , 1 ] ) min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } ,
and
| D 0 + γ 2 ; ψ u 2 ( t ) | = | c ( u ) · ( c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) ) | ( M 0 + D · N u C [ 0 , 1 ] ) · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } .
This implies that
u 2 X M 0 · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } + M 0 · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } + D · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } N u C [ 0 , 1 ] + D · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } N u C [ 0 , 1 ] = E + F N u C [ 0 , 1 ] ,
where
E : = M 0 · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } + M 0 · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | }
and
F : = D · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } + D · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c Γ ( γ ) ( ψ ( 1 ) ψ ( 0 ) ) d Γ ( γ 1 ) | , | d Γ ( γ 1 ) | } ,
which reveals that
u X u 1 X + u 2 X ( K P + F ) N u C [ 0 , 1 ] + E E + ( K P + F ) ( a 0 C [ 0 , 1 ] + ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) · u X ) E + ( K P + F ) a 0 C [ 0 , 1 ] 1 ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] )
From (H5′), we know that Ω 1 is bounded and the rest of the proof is identical to that of Theorem 2.
Theorem 4. 
Assume that (H), ( H 1 H 3 ) with d c < 0 or d c > ( ψ ( 1 ) ψ ( 0 ) ) , ( H 6 ) (of Lemma 9), and the following conditions hold:
Hypothesis 4″ (H4″).
There exists a constant M 0 > 0 such that if | u ( t ) | > M 0 , for all t [ 0 , 1 ] , then
( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) 0 .
Hypothesis 5″ (H5″).
There exist some positive functions a i ( t ) , i = 0 , 1 , 2 , 3 , 4 , with a 0 ( t ) , a 1 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) γ n , a 3 ( t ) , and a 4 ( t ) Y , such that for all ( u 1 , u 2 , u 3 , u 4 ) R 4 , t [ 0 , 1 ]
| f ( t , u 1 , u 2 , u 3 , u 4 ) | a 0 ( t ) + a 1 ( t ) | u 1 | + a 2 ( t ) | u 2 | + a 3 ( t ) | u 3 | + a 4 ( t ) | u 4 | ,
provided that ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) < 1 . Then, the functional boundary value problem (Equation (1)) has at least one solution in X.
Proof. 
As in the proof of Lemma 8, u Ω 1 means ( B 1 σ B 2 ) ( I 0 + α ; ψ N u ) = 0 . From (H4″), we know that there exists a constant t 0 [ 0 , 1 ] such that | u ( t 0 ) | M 0 . □
Remark 2. 
Note that we do not readily obtain | D 0 + γ 1 ; ψ u ( t 0 ) | , | D 0 + γ 2 ; ψ u ( t 0 ) | M 0 , which follows directly from (H4) and (H4′).
Similarly, u ( t ) = u 1 ( t ) + u 2 ( t ) , where u 1 = ( I P ) u dom L Ker P and u 2 = P u Im P . Thus, u 1 = K P L u 1 = K P L ( I P ) u = K P L u = λ K P N u . As in the proof of Lemma 8,
u 1 X K P · N u C [ 0 , 1 ] .
Now, u 2 = u u 1 , and we can invoke Equation (3) to show that
| ( ψ ( t ) ψ ( 0 ) ) n γ u 2 ( t 0 ) | | ( ψ ( t ) ψ ( 0 ) ) n γ u ( t 0 ) | + | ( ψ ( t ) ψ ( 0 ) ) n γ u 1 ( t 0 ) | M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] .
As in the proof of Lemma 8, u 2 ( t ) = P u ( t ) = c ( u ) ( c ( ψ ( t ) ψ ( 0 ) ) γ 1 d ( ψ ( t ) ψ ( 0 ) ) γ 2 ) . From (16), one obtains
| c ( u ) | M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] min t [ 0 , 1 ] { | c ( ψ ( t ) ψ ( 0 ) ) n 1 d ( ψ ( t ) ψ ( 0 ) ) n 2 | } = M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } ,
by solving c ( ψ ( t 0 ) ψ ( 0 ) ) n 1 d ( ψ ( t 0 ) ψ ( 0 ) ) n 2 in t [ 0 , 1 ] . Then,
| u 2 ( t ) ( ψ ( t ) ψ ( 0 ) ) n γ | | c ( u ) | · | c ( ψ ( t ) ψ ( 0 ) ) n 1 d ( ψ ( t ) ψ ( 0 ) ) n 2 | ( M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] ) | c | ( ψ ( 1 ) ψ ( 0 ) ) n 1 + | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } , | D 0 + γ 1 ; ψ u 2 ( t ) | = | c ( u ) · c Γ ( γ ) | | c | Γ ( γ ) M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } ,
and
| D 0 + γ 2 ; ψ u 2 ( t ) | = | c ( u ) · c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | ( M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ + B · N u C [ 0 , 1 ] ) · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } ,
which enables us to obtain
u 2 X M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } + M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } + B · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } N u C [ 0 , 1 ] + B · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } N u C [ 0 , 1 ] = E + F N u C [ 0 , 1 ] ,
where
E : = M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } + M 0 · ( ψ ( 1 ) ψ ( 0 ) ) n γ · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 }
and
F : = B · | c | ( ψ ( t ) ψ ( 0 ) ) n 1 + | d | ( ψ ( t ) ψ ( 0 ) ) n 2 + | c | Γ ( γ ) min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } + B · max t [ 0 , 1 ] { | c Γ ( γ ) ( ψ ( t ) ψ ( 0 ) ) d Γ ( γ 1 ) | } min { | c ( ψ ( 1 ) ψ ( 0 ) ) n 1 d ( ψ ( 1 ) ψ ( 0 ) ) n 2 | , | d | ( ψ ( 1 ) ψ ( 0 ) ) n 2 } .
Furthermore, it holds that
u X u 1 X + u 2 X ( K P + F ) N u C [ 0 , 1 ] + E E + ( K P + F ) ( a 0 C [ 0 , 1 ] + ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) u X ) E + ( K P + F ) a 0 C [ 0 , 1 ] 1 ( K P + F ) ( a 1 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 2 ( ψ ( t ) ψ ( 0 ) ) γ n C [ 0 , 1 ] + a 3 C [ 0 , 1 ] + a 4 C [ 0 , 1 ] ) .
From (H5″), we know that Ω 1 is bounded. The remaining part of the proof follows the same steps as those in Theorem 2.

4. Conclusions

The primary aim of this paper was to explore the type of advanced ψ -Hilfer fractional pantograph equations that come with functional boundary value conditions at resonance. This indicates that the linear operator L u = H D 0 + α , β ; ψ u ( t ) related to Equation (1) possesses nontrivial solutions (further details are provided in Lemma 4).
First, an important aspect is that the conditions on boundaries can expand, as shown in recent studies related to multi-point and integral boundary conditions. Next, pantograph equations are applicable in settings like electric trains and electric cells, meaning that exploring these functional boundary value issues provides significant insights both theoretically and practically. Additionally, when looking at how applicable a certain type of equation is, the requirements for its solution, or the unknown function, may vary. Therefore, this article examined what might be needed for the unknown function to be “smooth” in real situations, and we presented various existence solutions for the unknown function while considering three different needs using Mawhin’s coincidence theory, showcasing our unique view on the topic. Lastly, our next paper will focus on a linked pantograph system with sequential fractional differential equations, pantograph systems involving piecewise fractional differential equations, and the stability of their solutions.

Author Contributions

Conceptualization, B.S.; Software, T.Y.; Formal analysis, T.Y.; Investigation, S.L.; Data curation, S.L.; Writing—original draft, B.S.; Writing—review & editing, B.S.; Supervision, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Henan Provincial Natural Science Foundation Youth Fund (Grant No. 252300421788), the Key Scientific Research Projects of Universities in Henan Province (Grant No. 25B110004), the Natural Science Foundation of Henan (Grant No. 242300420337), the National Natural Science Foundation of China (Grant No. 12372013), the Natural Science Foundation of Henan (Grant No. 242300421166), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 24HASTIT034), and the Natural Science Foundation of Henan (Grant No. 232300420122).

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors would like to thank the editors for their help in the processing of this paper.

Conflicts of Interest

The authors state that there are no conflicts of interest.

References

  1. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; Wiley Online Library: Hoboken, NJ, USA, 2014. [Google Scholar]
  2. Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef]
  3. Manam, S.R. Multiple integral equations arising in the theory of water waves. Appl. Math. Lett. 2011, 24, 1369–1373. [Google Scholar] [CrossRef]
  4. Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar]
  5. Rudolf, H. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  6. Sousa, J.V.d.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  7. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  8. Sousa, J.V.d.C.; de Oliveira, E.C. Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2019, 77, 305–311. [Google Scholar] [CrossRef]
  9. Khalid, M.; Mallah, I.A.; Akgu¨l, A.; Alha, S.; Sakar, N. Applications of generalized formable transform with ψ-Hilfer-Prabhakar derivatives. Comput. Appl. Math. 2024, 43, 410. [Google Scholar] [CrossRef]
  10. Vieira, N.; Rodrigues, M.M.; Ferreira, M. Time-fractional diffusion equation with ψ-Hilfer derivative. Comput. Appl. Math. 2022, 41, 230. [Google Scholar] [CrossRef]
  11. Kharade, J.P.; Kucche, K.D. On the (k,ψ)-Hilfer nonlinear impulsive fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 16282–16304. [Google Scholar] [CrossRef]
  12. Almaghamsi, L.; Alghamdi, A.; Ghanmi, A. Existence of solution for a Langevin equation involving the ψ-Hilfer fractional derivative: A variational approach. Aims Math. 2025, 10, 534–550. [Google Scholar] [CrossRef]
  13. Abdelhedi, W. Fractional differential equations with a ψ-Hilfer fractional derivative. Comput. Appl. Math. 2021, 40, 53. [Google Scholar] [CrossRef]
  14. Kerboua, M.; Bouacida, I.; Segni, S. Null controllability of ψ-Hilfer implicit fractional integro-differential equations with ψ-Hilfer fractional nonlocal conditions. Evol. Equ. Control Theory 2023, 12, 1473–1491. [Google Scholar] [CrossRef]
  15. Boutiara, A.; Alzabut, J.; Selvam, A.G.M.; Vignesh, D. Analysis and applications of sequential hybrid ψ-Hilfer fractional differential equations and inclusions in Banach algebra. Qual. Theory Dyn. Syst. 2023, 22, 12. [Google Scholar] [CrossRef]
  16. Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations. J. Fixed Point Theory Appl. 2022, 24, 7. [Google Scholar] [CrossRef]
  17. Selvam, A.P.; Govindaraj, V. Examining reachability of fractional dynamical systems with delays in control utilizing ψ-Hilfer pseudo-fractional derivative. Phys. Scr. 2024, 99, 035225. [Google Scholar] [CrossRef]
  18. Patle, P.R.; Gabeleh, M.; Rakocˇević, V. Global optimization of a nonlinear system of differential equations involving ψ-Hilfer fractional derivatives of complex order. Fract. Calc. Appl. Anal. 2024, 27, 1369–1388. [Google Scholar] [CrossRef]
  19. Ockendon, J.R.; Tayler, A.B.; Temple, G.F.J. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A Math. Phys. Sci. 1997, 322, 447–468. [Google Scholar]
  20. Brunt, B.; Zaidi, A.A.; Lynch, T. Cell division and the pantograph equation. ESAIM Proc. Surv. 2018, 62, 158–167. [Google Scholar] [CrossRef]
  21. Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
  22. Bahsi, M.; Cevik, M.; Sezer, M. Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl. Math. Comput. 2015, 271, 11–21. [Google Scholar]
  23. Almalahi, M.A.; Panchal, S.K.; Jarad, F. Results on implicit fractional pantograph equations with Mittag-Leffler kernel and nonlocal condition. J. Math. 2022, 2022, 9693005. [Google Scholar] [CrossRef]
  24. Bahar Ali Khan, M.; Abdeljawad, T.; Shah, K.; Ali, G.; Khan, H.; Khan, A. Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations. Adv. Differ. Equ. 2021, 2021, 143. [Google Scholar] [CrossRef]
  25. Belarbi, S.; Dahmani, Z.; Sarikaya, M.Z. A sequential fractional differential problem of pantograph type: Existence uniqueness and illustrations. Turk. J. Math. 2022, 46, 563–586. [Google Scholar]
  26. George, R.; Houas, M.; Ghaderi, M.; Rezapour, S.; Elagan, S. On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities. Results Phys. 2022, 39, 105687. [Google Scholar] [CrossRef]
  27. Guida, K.; Hilal, K.; Ibnelazyz, L. Existence results for a class of coupled Hilfer fractional pantograph differential equations with nonlocal integral boundary value conditions. Adv. Math. Phys. 2020, 2020, 8898292. [Google Scholar] [CrossRef]
  28. Afshari, H.; Marasi, H.; Alzabut, J. Applications of new contraction mappings on existence and uniqueness results for implicit φ-Hilfer fractional pantograph differential equations. J. Inequal. Appl. 2021, 2021, 185. [Google Scholar] [CrossRef]
  29. Eriqat, T.; El-Ajou, A.; Moa’ath, N.O.; Al-Zhour, Z.; Momani, S. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
  30. Foukrach, D.; Bouriah, S.; Benchohra, M.; Karapinar, E. Some new results for ψ-Hilfer fractional pantograph-type differential equation depending on ψ-Riemann–Liouville integral. J. Anal. 2022, 30, 195–219. [Google Scholar] [CrossRef]
  31. Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Alharbi, B. Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator. Demonstr. Math. 2023, 56, 20220195. [Google Scholar] [CrossRef]
  32. Aly, E.S.; Maheswari, M.L.; Shri, K.S.K.; Hamali, W. A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions. Bound. Value Probl. 2024, 2024, 56. [Google Scholar] [CrossRef]
  33. Stanek, S. Functional boundary value problems for second order functional differential equations of the neutral type. Glas. Mat. 2001, 36, 73–84. [Google Scholar]
  34. Cabada, A.; Pouso, R.; Minhos, F. Extremal solutions to fourth-order functional boundary value problems including multi point conditions. Nonlinear Anal. Real World Appl. 2009, 10, 2157–2170. [Google Scholar] [CrossRef]
  35. Zhang, S.; Sun, B. Nonlinear differential equations involving mixed fractional derivatives with functional boundary data. Math. Methods Appl. Sci. 2022, 45, 5930–5944. [Google Scholar] [CrossRef]
  36. Kosmatov, N.; Jiang, W. Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 2016, 8, 349–365. [Google Scholar] [CrossRef]
  37. Kosmatov, N.; Jiang, W. Resonant functional problems of fractional order. Chaos Solitons Fractals 2016, 91, 573–579. [Google Scholar] [CrossRef]
  38. Jiang, W.; Kosmatov, N. Resonant p-Laplacian problems with functional boundary conditions. Bound Value Probl. 2018, 2018, 72. [Google Scholar] [CrossRef]
  39. Mawhin, J. Topological Degree Methods in Nonlinear Boundary Value Problems; NSF-CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1979; Volume 40. [Google Scholar]
  40. Gaines, R.; Mawhin, J. Coincidence Degree and Nonlinear Differential Equation; Springer: Berlin, Germany, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Sun, B.; Zhang, S.; Yu, T.; Li, S. A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance. Fractal Fract. 2025, 9, 186. https://doi.org/10.3390/fractalfract9030186

AMA Style

Sun B, Zhang S, Yu T, Li S. A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance. Fractal and Fractional. 2025; 9(3):186. https://doi.org/10.3390/fractalfract9030186

Chicago/Turabian Style

Sun, Bingzhi, Shuqin Zhang, Tianhu Yu, and Shanshan Li. 2025. "A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance" Fractal and Fractional 9, no. 3: 186. https://doi.org/10.3390/fractalfract9030186

APA Style

Sun, B., Zhang, S., Yu, T., & Li, S. (2025). A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance. Fractal and Fractional, 9(3), 186. https://doi.org/10.3390/fractalfract9030186

Article Metrics

Back to TopTop