Coefficient Bounds for Alpha-Convex Functions Involving the Linear q-Derivative Operator Connected with the Cardioid Domain
Abstract
1. Introduction and Preliminaries
- (i)
- The function is univalent in the disk
- (ii)
- If then where
- (iii)
- If then
- (iv)
- Let and Then,
2. Coefficient Estimates for the Class
3. Inverse Coefficients for the Class
4. Logarithmic Coefficients for the Class
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinburgb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations, to methods of their solution and some of their applications. Math. Scand. 2011, 340, 55–70. [Google Scholar]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 1998, 340, 55–70. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Jackson, F.H. q-Difference Equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set-Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Srivastava, H.M.; Arjika, S. A general family of q-hypergeometric polynomials and associated generating functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Breaz, D.; Khan, S.; Tchier, F. Certain New applications of symmetric q-calculus for new subclasses of multivalent functions associated with the cardioid domain. Axioms 2024, 13, 366. [Google Scholar] [CrossRef]
- Khan, M.F.; AbaOud, M. New applications of fractional q-calculus operator for a new subclasses of q-starlike functions related with the cardioid domain. Fractal Frac. 2024, 8, 71. [Google Scholar] [CrossRef]
- Al-Shaikh, S.B. New Applications of the Sălăgean Quantum Differential Operator for New Subclasses of q-Starlike and q-Convex Functions Associated with the Cardioid Domain. Symmetry 2023, 15, 1185. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Mocanu, P.T. Une propriété de conexité generalisée dans la théorie de la representation conforme. Mathematica 1969, 34, 127–133. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination; Theory and Applications, Series on monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Paprocki, E.; Sokól, J. The extremal problems in some subclass of strongly starlike functions. Folia Scient. Univ. Tech. Resoviensis 1996, 157, 89–94. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokól, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokól, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comp. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokól, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2015, 27, 923–939. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Function; Mariner Publishing Company Inc.: Boston, MA, USA, 1983. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Winiowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Winiowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Sokól, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokól, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Soren, M.M.; Barik, S.; Mishra, A.K. Fekete-Szegö problem for some subclasses of bi-univalent functions. J. Anal. 2021, 29, 147–162. [Google Scholar] [CrossRef]
- Marimuthu, K.; Jayaraman, U.; Bulboacă, T. Fekete-Szegö and Zalcman functional estimates for subclasses of alpha-convex functions related to trigonometric functions. Mathematics 2024, 12, 234. [Google Scholar] [CrossRef]
- Bieberbach, L. Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbidung des Einbeiskreises vermitteln. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for function whose derivative has a positive real part. J. Inequal. Pureand Appl. Math. 2006, 7, 50. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Encyclopedia of Mathematics and Its Applications; Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- Raina, R.K.; Sharma, P. Subordination Properties of univalent functions involving a new class of operators. Electron. J. Math. Anal. Appl. 2014, 2, 37–52. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Amer. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Sokól, J.; Malik, S.N. On starlike functions associated with cardioid domain. Publ. Institut Math. 2021, 109, 95–107. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourthcoefficient of functions in the Caratheodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; ¸Seker, B.; Çekiç, B. Second Hankel determinant of the logarithmic coefficients for a subclass of univalent functions. Miskolc Math. Notes 2024, 25, 479–488. [Google Scholar] [CrossRef]
- Guo, D.; Tang, H.; Zhang, J.; Xu, Q.; Li, Z. Hankel determinants for the logarithmic coefficients of a subclass of close-to-convex functions. J. Math. 2024, 1, 1315252. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palei, S.; Soren, M.M.; Cotîrlǎ, L.-I. Coefficient Bounds for Alpha-Convex Functions Involving the Linear q-Derivative Operator Connected with the Cardioid Domain. Fractal Fract. 2025, 9, 172. https://doi.org/10.3390/fractalfract9030172
Palei S, Soren MM, Cotîrlǎ L-I. Coefficient Bounds for Alpha-Convex Functions Involving the Linear q-Derivative Operator Connected with the Cardioid Domain. Fractal and Fractional. 2025; 9(3):172. https://doi.org/10.3390/fractalfract9030172
Chicago/Turabian StylePalei, Sudhansu, Madan Mohan Soren, and Luminiţa-Ioana Cotîrlǎ. 2025. "Coefficient Bounds for Alpha-Convex Functions Involving the Linear q-Derivative Operator Connected with the Cardioid Domain" Fractal and Fractional 9, no. 3: 172. https://doi.org/10.3390/fractalfract9030172
APA StylePalei, S., Soren, M. M., & Cotîrlǎ, L.-I. (2025). Coefficient Bounds for Alpha-Convex Functions Involving the Linear q-Derivative Operator Connected with the Cardioid Domain. Fractal and Fractional, 9(3), 172. https://doi.org/10.3390/fractalfract9030172